Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yến Chử
Xem chi tiết

a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x

=> ( x-2)2 +2023 \(\ge\) 2023

Vậy ...

Dấu bằng xảy ra khi x-2 = 0

b. (x-3)2+(y-2)2-2018

Ta có: \((x-3)^2 \ge0,\forall x\)

           \((y-2) ^2 \ge0,\forall y\) 

=> ( x-3)2 + ( y-2)2 \(\ge\) 0

=>  ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y 

Vậy ...

Dấu bằng xảy ra khi x-3=0

                                 y-2=0

c. ( x+1)2 +100

Ta có : ( x+1)2 \(\ge0,\forall x\) 

=> ( x+1)2+100 \(\ge\) 100

Vậy ...

Dấu bằng xảy ra khi x+1=0

Yến Chử
Xem chi tiết
Kiều Vũ Linh
10 tháng 7 2023 lúc 11:16

a) -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2003

Ta có:

(3 - x)¹⁰⁰ ≥ 0

⇒ -(3 - x)¹⁰⁰ ≤ 0

(y + 2)²⁰⁰ ≥ 0

⇒ -3(y + 2)²⁰⁰ ≤ 0

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ ≤ 0 

⇒ -(3 - x)¹⁰⁰ - 3(y + 2)²⁰⁰ + 2023 ≤ 2023

Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = 3 và y = -2

b) (x² + 3)² + 125

= x⁴ + 6x² + 9 + 125

= x⁴ + 6x² + 134

Ta có:

x⁴ ≥ 0

x² ≥ 0

⇒ 6x² ≥ 0

⇒ x⁴ + 6x² ≥ 0

⇒ x⁴ + 6x² + 134 ≥ 134

⇒ (x² + 3)² + 125 ≥ 134

Vậy giá trị nhỏ nhất của biểu thức đã cho là 134

c) -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022

Ta có:

(x - 20)²⁰⁰ ≥ 0

⇒ -(x - 20)²⁰⁰ ≤ 0

(y + 5)¹⁰⁰ ≥ 0

⇒ -2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ ≤ 0

⇒ -(x - 20)²⁰⁰ - 2(y + 5)¹⁰⁰ + 2022 ≤ 2022

Vậy giá trị lớn nhất của biểu thức đã cho là 2022 khi x = 20 và y = -5

Nàng tiên cá
Xem chi tiết
Thành Vinh Lê
16 tháng 9 2018 lúc 8:09

D=(x-1)(x+5)(x-3)(x+7)

=(x2+4x-5)(x2+4x-21)

=(x2+4x-5)2-16(x2+4x-5)

=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64

Nguyễn Đức Hiếu
21 tháng 5 2020 lúc 16:32

x=-6 thì D có giá trị nhỏ nhất là: -70

Khách vãng lai đã xóa
Qasalt
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
nguyễn ánh hằng
9 tháng 2 2020 lúc 20:48

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

Khách vãng lai đã xóa
Agatsuma Zenitsu
9 tháng 2 2020 lúc 21:51

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)

Khách vãng lai đã xóa
Agatsuma Zenitsu
9 tháng 2 2020 lúc 23:23

Aaaaa! Nãy tui bị ngu vậy mới đúng nè hay sao ý @@

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9| \)

\(\Rightarrow\)\( T=|1-x|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x| \)

\(T\ge\)\( |1-x +x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x| \)

\(\Rightarrow T\ge|44-x|\)

Vậy GTNN của x = 44 khi x = 0

Khách vãng lai đã xóa
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Lê Thu Hiền
Xem chi tiết
Huyền Trang
5 tháng 2 2021 lúc 15:15

undefined

Lê Thu Hiền
5 tháng 2 2021 lúc 12:33

Giups mik vs

lolang

NGUYỄN MINH HUY
Xem chi tiết
Thanh Tu Nguyen
Xem chi tiết
Akai Haruma
14 tháng 7 2023 lúc 8:38

Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$

$=a(a+2)$ (đặt $x^2-5x+4=a$)

$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$

Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$

$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$