Xác định a để đa thức \(x^3-3x+a\)chia hết cho \(\left(x-1\right)^2\)
Xác định giá trị của a để đa thức \(P\left(x\right)=3x^3-8x^2+6x-a\) chia hết cho đa thức\(Q\left(x\right)=3x^2-5x+1\)
Cho 2 đa thức :
\(A\left(x\right)=2x^3+3x^2-x+a\)
\(B\left(x\right)=2x+1\)
a)Tìm đa thức thương và đa thức dư trong phép chia 2 đa thức A(x) và B(x)
b)Xác định a để đa thức A(x)luôn chia hết cho đa thức B(x)
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
a) Xác định a để đa thức \(3x^3+10x^2-5+a\) chia hết cho đa thức 3x+1
b)Xác định a để đa thức \(x^3-3x+a\) chia hết cho \(\left(x-1\right)^2\)
c) Tìm tất cả các số nguyên n để \(2n^2+n-7\) chia hết cho n-2
a: \(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1+a-4⋮3x+1\)
=>a-4=0
hay a=4
c: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Xác định a để đa thức 2x^3 - 3x^2 + x + a chia hết cho đa thức x + 3
\(\Leftrightarrow2x^3-3x^2+x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\Leftrightarrow-54-27-3+a=0\Leftrightarrow a=84\)
Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)
f(x) chia hết cho x^2+3x-1
=>(2a-b)=0 và 3b+a=0
=>a=b=0
Xác định a để đa thức: \(x^3+x^2+a-x\) chia hết cho \(\left(x+1\right)^2\)
Xác định các hệ số a,b,c để đa thức:
\(f\left(x\right)=x^5-2x^4-6x^3+ax^2+bx+c\) chia hết cho đa thức \(g\left(x\right)=\left(x^2-1\right)\left(x-3\right)\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
Xác định a để cho đa thức x^3 - 3x +a chia hết cho (x-1)^2
Bài 3 :
a) Tìm các giá trị nguyên của n để giá trị của biểu thức \(2n^2-n+2\) chia hết cho giá trị biểu thức 2n + 1
b) Cho đa thức M(x) = \(x^3+x^2-x+a\) với a là một hằng số . Xác định giá trị của a sao cho đa thức M(x) chia hết cho \(\left(x+1\right)^2\)
c) Cho hai đa thức P(x) = \(x^4+3x^3-x^2+ax+b\) và Q(x) = \(x^2+2x-3\) với a , b là hai hằng số . Xác định giá trị của đa thức P(x) chia hết cho đa thức Q(x)
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
b) Áp dụng định lý Bezout ta có:
\(M\left(x\right)\)chia hết cho \(\left(x+1\right)^2\)\(\Leftrightarrow M\left(-1\right)=0\)
\(\Leftrightarrow-1+1+1+a=0\)
\(\Leftrightarrow a=-1\)
Vậy a=-1 thì M(x) chia hết cho \(\left(x+1\right)^2\)