Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sayaka
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 11 2021 lúc 10:03

\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 9 2019 lúc 16:10

Ta có:  a b < a + c b + c

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2019 lúc 10:05

Lê Anh Sơn
Xem chi tiết
Hoàng Thùy Dương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 10 2017 lúc 16:35

Áp dụng kết quả bài 5, ta có: Giải sách bài tập Toán 7 | Giải sbt Toán 7 ⇒ ad < bc (1)

Cộng cả hai vế của (1) với ab ta có: ab + ad < ab + bc

hay a(b + d) < b.(a + c)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Cộng cả hai vế của (1) với cd ta có: ad + cd < bc + cd

Hay d(a + c) < c(b + d)

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Vậy Giải sách bài tập Toán 7 | Giải sbt Toán 7

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2017 lúc 9:16

Ta có:  a b < c d ⇒ a d < b c   n ê n  

a b + a d < a b + b c ⇔ a ( b + d ) < b ( a + c ) ⇔ a b < a + c b + d

Mặt khác: 

a d + c d < b c + d c ⇔ d ( a + c ) < c ( b + d ) ⇔ a + c b + d < c d

Từ (1) và  (2):  a b < a + c b + d < c d

yeens
Xem chi tiết
GOD_Shine
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 21:08

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 21:10

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)