Tìm giá trị nhỏ nhất của biểu thức: A = ( x- 1)(x + 2)(x + 3)(x + 6)+ 2015
TRẦN VIỆT LINH help me
tìm giá trị nhỏ nhất của biểu thức: A=(x+2).(x-3)
help me pls
Ta có: A = (x + 2)(x - 3)
= x2 - x - 6
=\(x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{25}{4}\)
= \(\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\Rightarrow x=0,5\)
Vậy Min A = -25/4 <=> x = 0,5
Help me:
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau:
A=x^2+15/x^2+3
Tìm giá trị nhỏ nhất và lớn nhất của biểu thức sau:
\(A=\left|x+5\right|+2-x\)
HELP ME
\(A=\left|x+5\right|+2-x\\ \Rightarrow A\ge x+5+2-x\forall x\\ \Rightarrow A\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+5\right|=x+5\\ \Leftrightarrow x+5\ge0\\ \Leftrightarrow x\ge-5\)
Vậy GTNN của A = 7
Help me
Tìm giá trị nhỏ nhất của biểu thức:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
Để M bé nhất => \(|x-5|\)bé nhất.
\(\Rightarrow|x-5|=0\Rightarrow x-5=0\Rightarrow x=5\)
Thay x vào M, ta có:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
\(\Rightarrow M=|5-2|+|5-3|+|5-4|+|5-5|\)
\(\Rightarrow M=3+2+1+0=6\)
Vậy M có giá trị nhỏ nhất = 6 khi x = 5.
\(\left|x-2\right|+\left|x-5\right|=\left|-x+2\right|+\left|x-5\right|\ge\left|-x+2+x-5\right|=3\)(1)
\(\left|x-3\right|+\left|x-4\right|=\left|-x+3\right|+\left|x-4\right|\ge\left|-x+3+x-4\right|=1\)(2)
\(M\ge3+1=4\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2\right).\left(x-5\right)\ge0\\\left(-x+3\right).\left(x-4\right)\ge0\end{cases}\Leftrightarrow3\le x\le4}\)
Vậy...
\(A=\left(\dfrac{x}{x-3}-\dfrac{x-1}{x^2-x-6}\right):\left(\dfrac{x}{x+2}+\dfrac{5x+1}{x^2-x-6}\right)\)
1)Tìm x để giá trị của biểu thức A đc xác định.Rút gọn biểu thức A
2)Tìm x để biểu thức A đạt giá trị nhỏ nhất
1:
ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)
\(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)
\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
Tìm giá trị lớn nhất của biểu thức \(A=\dfrac{3+2\left|X+2\right|}{1+\left|X+2\right|}\)
HELP ME!
Lời giải:
Đặt $|x+2|=a$ với $a\geq 0$. Khi đó:
$A=\frac{3+2a}{1+a}=\frac{2(1+a)+1}{1+a}=2+\frac{1}{1+a}$
Vì $a\geq 0$ với mọi $x$ nên $1+a\geq 1$
$\Rightarrow A=2+\frac{1}{1+a}\leq 2+\frac{1}{1}=3$
Vậy $A_{\max}=3$. Giá trị này đạt tại $a=0\Leftrightarrow |x+2|=0\Leftrightarrow x=-2$
help me:
tìm giá trị lớn nhất của biểu thức:
a) A = -x(x-2) + 2x - 8
b) B = -x2 +6 - 11
a) \(A=-x\left(x-2\right)+2x-8=-x^2+2x+2x-8\\ =-x^2+4x-8\\ =-\left(x^2-4x+4\right)+4-8\\ =-\left(x-2\right)^2-4\)
Vì : \(\left(x-2\right)^2\ge0\forall x\)
\(=>-\left(x-2\right)^2\le0\)
\(=>A\le-4\)
Dấu = xảy ra khi : \(\left(x-2\right)^2=0=>x=2\)
Vậy GTLN bt A là : -4 tại x = 2
b) \(B=-x^2+6x-11\\ =-\left(x^2-6x+9\right)+9-11\\ =-\left(x-3\right)^2-2\le-2\forall x\)
Dấu = xảy ra khi : \(\left(x-3\right)^2=0=>x=3\)
Vậy GTLN của B là : -2 tại x = 3
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8