Chứng minh n^5 - 1 chia hết cho 30
cho 1 số tự nhiên n chứng minh: n5-n chia hết cho 30
Chứng minh rằng n = 5 ^ 0 + 5 ^ 1 + + 5 ^ 2019 chia hết cho 126 ;chia hết cho 30
bai nay co hai y lan nha
\(n=5^0+5^1+...+5^{2019}\)
\(n=\left(5^0+5^3\right)+\left(5^1+5^4\right)+...+\left(5^{2016}+5^{2019}\right)\)
\(n=\left(5^0+5^3\right)+5\left(5^0+5^3\right)+...+5^{2016}\left(5^0+5^3\right)\)
\(n=126+5\cdot126+...+5^{2016}\cdot126\)
\(n=126\left(1+5+...+5^{2016}\right)⋮126\) (đpcm)
________
\(n=5^0+5^1+...+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+\left(5^{2017}+5^{2018}\right)+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+5^{2016}\left(5^1+5^2\right)+5^{2019}\)
\(n=5^0+30+...+5^{2016}\cdot30+5^{2019}\)
\(n=5^0+30\left(1+5^2+...+5^{2016}\right)+5^{2019}\)
Đến đây bí =))
Cbht
1. Cho P là số nguyên tố lớn hơn 3.Chứng minh P^2 - 1 chi hết cho 24
2. Chứng minh (a+b+c) chia hết cho 30 thì (a^5+b^5+c^5) chia hết cho 30
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
Cho x thuộc Z
1. Chứng minh: x2(x4-1) chia hết cho 6
2. Chứng minh: m.n(m4-n4) chia hết cho 30
3. Chứng minh: 2n.(16-n4) chia hết cho 30
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 3$
Vì $n(n-1)$ là tích 2 số nguyên liên tiếp nên $n(n-1)\vdots 2$
$\Rightarrow n^5-n\vdots 2,3$
Mà $(2,3)=1$ nên $n^5-n\vdots 6(*)$
Mặt khác:
Ta biết rằng 1 scp chia 5 có thể có dư là $0,1,4$
$\Rightarrow n(n^2-1)(n^2+1)\vdots 5, \forall n$ nguyên $(**)$
Từ $(*); (**)\Rightarrow n^5-n\vdots (5.6=30)$
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
cho m/n=1/2+1/3+1/4+1/5+....1/30 chứng minh rằng m chia hết cho 5