Cho 3 số a,b,c >0 và (a+b)(b+c)(c+a)=8abc
Cm a=b=c
với a,b,c > 0. CM: (a+b)(b+c)(c+a)>=8abc
cho hỏi ngu tý: nhân lại vs nhau sẽ đc vế pải: 8*(căn ab)*(căn bc)*(căn ac) thì biến đổi tiếp như nào?
cho a,b,c thoả mãn (a+b)(a+c)(b+c)=8abc. Cm a=b=c
cho a, b,c là độ dài 3 cạnh của tam giác
CM : ( a + b - c)( c + a - b ) bé hơn hoặc bằng 8abc
Cho a,b,c >0 va (a+b)(b+c)(c+a)=8abc
C/m a=b=c
Cô-Si 2 số dương:
\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)
\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=\left(2.2.2\right)\left(\sqrt{ab}.\sqrt{bc}.\sqrt{ca}\right)=8abc\)
cho a, b, c khác 0. chứng minh (a+b)(b+c)(c+a)>=8abc
Đề phải cho \(a,b,c\) là các số dương nữa :)
Giải:
Áp dụng BĐT Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Bổ sung đk a,b,c > 0
BĐT \(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\) (đúng)
\(\Rightarrow\) Q.E.D
Dấu "=" xảy ra tại a =b =c
Cho \(x,y,z>0\). CMR \(\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)
\(VT=\dfrac{a+b}{2\sqrt[3]{abc}}+\dfrac{b+c}{2\sqrt[3]{abc}}+\dfrac{c+a}{2\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\) (AM-GM 4 số hạng)
Chứng minh (1-a)(1-b)(1-c)\(\ge\)8abc. Với mọi a,b,c>0 và a+b+c=1
Áp dụng BĐT AM-GM:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(b+c\right)\left(c+a\right)\left(a+b\right)\ge2\sqrt{bc}.2\sqrt{ca}.2\sqrt{ab}=8abc\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a;b;c là 3 số dương thỏa mãn hệ thức:
(a+b).(b+c).(c+a)=8abc
CMR a=b=c
Cho a,b,c là 3 số dương bất kì thoả mãn hệ thức (a+b)(a+c)(b+c)=8abc. Cmr a=b=c
áp dụng bất đẳng thức cô si ta có
(a+b)(b+c)(c+a) >= \(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{\left(abc\right)^2}=8abc\)
dấu = xảy ra <=> a=b=c
vậy (a+b)...=8abc <=> a=b=c