Với p là số nguyên tố và một trong hai số 8p - 1 ; 8p + 1 là số nguyên tố . Thì số còn lại là số nguyên tố hay hợp số ?
GIÚP NHA
với p là số nguyên tố và là một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số thứ ba là số nguyên tố hay hợp số
Với p = 3, ta có:
⦁ 8p – 1 = 23 là số nguyên tố;
⦁ 8p + 1 = 25 không phải là số nguyên tố.
Với p ≠ 3, ta có: p không chia hết cho 3 nên 8p không chia hết cho 3.
Ta có 8p(8p – 1)(8p + 1) là tích của 3 số tự nhiên liên tiếp.
Suy ra 8p(8p – 1)(8p + 1) chia hết cho 3.
Lại có 8p – 1 > 3 (p ∈ ℕ).
Suy ra 8p – 1 không chia hết cho 3.
Do đó 8p + 1 chia hết cho 3.
Mà 8p + 1 > 3, p ∈ ℕ.
Suy ra 8p + 1 là hợp số.
Vậy 8p + 1 là hợp số; 8p - 1 là số nguyên tố.
Với p là số nguyên tố và một trong hai số 8p - 1 ; 8p + 1 là số nguyên tố . Thì số còn lại là số nguyên tố hay hợp số ?
Xét ba số liên tiếp \(8p-1;8p;8p+1\), chắc chắn ta tìm được một số chia hết cho 3
+Giả sử nếu chọn 8p-1 là số nguyên tố thì \(8p-1>3\) và \(8p-1\)không chia hết cho 3
Do vậy tồn tại một trong hai số còn lại là 8p và 8p+1 chia hết cho 3 . Vậy thì tích \(8p\left(8p+1\right)\) cũng chia hết cho 3
Nhưng từ giả thiết , ta lại có p là số nguyên tố, do vậy 8p không thể chia hết cho 3. Vậy 8p+1 chia hết cho 3 => 8p+1 là hợp số
+Giả sử với trường hợp 8p+1 là số nguyên tố thì lập luận tương tự ta cũng suy ra 8p-1 là hợp số.
Vậy ........................................
...ko bao giờ có 8p là số nguyên tố, vì Ư(8p)={1,2,...,8,...,p,....,8p}
Cho p là số nguyên tố và một trong hai số 8p+1 và 8p-1 là số nguyên tố . Hỏi số còn lại là số nguyên tố hay hợp số
Với p=3 =>8p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số
Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.
Cho p là số nguyên tố và một trong hai số 8p+1 và 8p-1 là số nguyên tố. Vậy số còn lại là số nguyên tố hay hợp số?
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
help me!!!!!!!!!!!!
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
Mình làm phần b hộ cho
vì p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2(k thuộc Z)
Vì p+4 cũng là số nguyên tố nên p#3k+2 vì nếu p=3k+2 thì p+4= 3k+2+4=3k+6 (là hợp số)
=> p=3k+1
Vậy p+8=3k+1+8=3k+9 (là hợp số)
k mình nha, ai k trả lời bên dưới mình sẽ k lại.
Cho p là một số nguyên tố. Chứng minh rằng hai số 8p - 1 và 8p + 1 không đồng thời là hai số nguyên tố.
Giả sử có 8p-1;8p+1 là SNT
Nếu p = 3 => 8p+1=25 không phải SNT
=> p \(⋮̸3\)
=> 8p \(⋮̸3\)
Xét 8p-1;8p;8p+1 là 3 số TN liên tiếp
=> Luôn tồn tại 1 số chia hết cho 3 (vô lý)
Bài này mình chịu
Cho p là một số nguyên tố. Chứng minh rằng hai số 8p - 1 và 8p + 1 không đồng thời là hai số nguyên tố.
Với p=2 => \(\hept{\begin{cases}8p+1=8\cdot2+1=16+1=17\\8p-1=8\cdot2-1=16-1=15\end{cases}}\)
Với p=3 \(\Rightarrow\hept{\begin{cases}8p-1=8\cdot3-1=24-1=23\\8p+1=8\cdot3+1=24+1=25\end{cases}}\)
Nếu p>3 => p có dạng 3k+1 hoặc 3k+2
Với p=3k+1 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+1\right)-1=24k+8-1=24k+7\\8p+1=8\left(3k+1\right)+1=24k+8+1=24k+9\end{cases}}\)
Với p=3k+2 \(\Rightarrow\hept{\begin{cases}8p-1=8\left(3k+2\right)-1=24k+16-1=24k+15\\8p+1=8\left(3k+2\right)+1=24k+16+1=24k+17\end{cases}}\)
=> đpcm
Cho p là một số nguyên tố . Chứng tỏ
Hai số 8p-1 và 8p+1 không đồng thời là số nguyên tố
Với \(p=3\Rightarrow8p+1=25\) không là số nguyên tố
Với \(p>3\Rightarrow p\) không chia hết cho 3 nên \(p=3k+1\) hoặc \(p=3k+2\)
- Với \(p=3k+1\Rightarrow8p+1=24k+9=3\left(8k+3\right)⋮3\) nên không là số nguyên tố
- Với \(p=3k+2\Rightarrow8p-1=24k+15=3\left(8k+5\right)⋮3\) nên không là số nguyên tố
Vậy \(8p-1\) và \(8p+1\) luôn có ít nhất 1 số là hợp số, hay 2 số đã cho không đồng thời là số nguyên tố