Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trọng Quý
Xem chi tiết

Bài 1

a, cm : A = 165 + 215 ⋮ 3

    A = 165 + 215

   A = (24)5 +  215

  A  = 220 + 215

 A  =  215.(25 + 1)

 A = 215. 33 ⋮ 3 (đpcm)

b,cm : B = 88 + 220 ⋮ 17

    B = (23)8 + 220 

    B =  216 + 220

    B = 216.(1 + 24)

    B = 216. 17 ⋮ 17 (đpcm)

 

 

  

c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1

C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)

C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)

C = 1 + 42+...+ 22016.42

C = 1 + 42.(20+...+22016)

42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm

          

a, \(\overline{aaa}\) \(⋮\) 37

    \(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)

b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11

  \(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2018 lúc 11:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2018 lúc 3:21

Sơ đồ con đường

Lời giải chi tiết

 

   B = 16 5 + 2 15      = 2 4 5 + 2 15      = 2 20 + 2 15      = 2 15 2 5 + 1      = 2 15 .33

Áp dụng tính chất chia hết của một tích ta có:

33 ⋮ 33 ⇒ 2 15 .33 ⋮ 33 ⇒ B ⋮ 33

Mèo Con
Xem chi tiết
ngonhuminh
4 tháng 1 2017 lúc 16:30

Mình chỉ làm được ý 3 thôi: 

Asuka Kurashina
4 tháng 1 2017 lúc 16:40

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Toàn Quyền Nguyễn
6 tháng 1 2017 lúc 19:53

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 2+ 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

nguyễn ngoc kim ngân
Xem chi tiết
Nguyễn Thị Lan Hương
Xem chi tiết
minh anh
Xem chi tiết
HT.Phong (9A5)
17 tháng 8 2023 lúc 10:47

Gọi 6 số đó là:

\(x,\left(x+1\right),\left(x+2\right),\left(x+3\right),\left(x+4\right),\left(x+5\right)\)

Mà: \(x\left(x+1\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\left(x+2\right)\left(x+3\right)\) là hai số tự nhiên liên tiếp nên sẽ chia hết cho 2

\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) chia hết cho 2.2 = 4 

Mà: \(x\left(x+1\right)\left(x+2\right)\) chia hết cho 3

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\) sẽ chia hết cho 4.3 = 12 

Và: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 4 nên

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)\) sẽ chia hết cho 12.4 = 48

Ngân Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 14:32

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)

hoàng gia lâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 12:58

b: \(B=16^5+2^{15}\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(45⋮9;99⋮9;180⋮9\)

Do đó: \(45+99+180⋮9\)

=>\(C⋮9\)

d: \(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(D=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)\)

=>D chia hết cho cả 3 và 5

 

Nguyen Duong
Xem chi tiết
tran vinh
12 tháng 7 2021 lúc 19:58

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

Khách vãng lai đã xóa
Phùng Đoàn Bảo Vy (minh...
13 tháng 10 2021 lúc 20:44

ASDWE RHTYJNHWSAVFGB

Khách vãng lai đã xóa