Giải hệ phương trình
x^2+y^2=1
x^3+y^3=1
giải hệ phương trình
x^2+xy+y^2=1
x-y-xy=3
\(\left\{{}\begin{matrix}x^2+xy+y^2=1\\x-y-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+3xy=1\\x-y-xy=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+3v=1\\u-v=3\end{matrix}\right.\)
\(\Rightarrow u^2+3\left(u-3\right)=1\)
\(\Leftrightarrow u^2+3u-10=0\Rightarrow\left[{}\begin{matrix}u=2\Rightarrow v=-1\\u=-5\Rightarrow v=-8\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}u=2\\v=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\xy=-1\end{matrix}\right.\)
\(\Rightarrow x\left(x-2\right)=-1\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\Rightarrow y=-1\)
TH2: \(\left\{{}\begin{matrix}u=-5\\v=-8\end{matrix}\right.\) \(\Rightarrow...\) bạn tự làm tương tự
Giải bất phương trình
x^2>= 1
x^2 < 1
x^2+3x>=0
x^2+3x+3 >=0
a, \(x^2\)≥1
\(\Leftrightarrow\) x>1
b, \(x^2\)<1
\(\Rightarrow\) x∈∅
c, \(x^2\)+3x ≥ 0
\(\Leftrightarrow\) \(x^2\)≥-3x
\(\Leftrightarrow\) x≥-3
d, \(x^2\)+3x+3≥0
\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)
\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0
\(\Leftrightarrow\)\(x^2\)≥\(\dfrac{9}{4}\)
\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)
Giải hệ phương trình
8x + xy - 3y = 24
giải hệ phương trình
x - y = m
2x + y = 4
Giải hệ phương trình
X + y = 1
2x - y = 8
\(\left\{{}\begin{matrix}x+y=1\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=2\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(2x-2x\right)+\left(2y+y\right)=2-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(3;-2\right)\)
Giải hệ phương trình
x - 1/y = 1
y - 1/z = 1
z - 1/x = 1
Giải hệ phương trình
x(y+z)=-1
y(x+z)=-9
z(x+y)=-4
Làm giúp em ạ em cảm ơn
Giải hệ phương trình: 1 x + 1 + y - 2 = 2 3 x + 1 + 6 y - 2 = 9
A. ( 3; 2)
B. ( 3; 3)
C. ( 0; 6)
D. ( 0; 3).
Giải các hệ phương trình sau bằng phương pháp thế: 2 - 1 x - y = 2 x + 2 + 1 y = 1
Cách 1
Vậy hệ phương trình có nghiệm duy nhất
Cách 2