giải hệ phương trình:
\(\left\{{}\begin{matrix}xy+3y^2+x=3\\x^2+xy-2y^2=0\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}x^2+xy+y^2+4x+3y=0\\xy+x+2y=0\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{4}{11}\\\dfrac{2x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)
Giải hệ phương trình:\(\left\{{}\begin{matrix}2x+3y=xy+5\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)
giải các hệ phương trình
a)\(\left\{{}\begin{matrix}x^2+y^2=1\\x^3+y^3=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{5}{12}\\x^2+y^2=1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2-xy+y^2=3\\2x^2-xy+3y^2=12\end{matrix}\right.\)
giải hệ phương trình
x^2+xy+y^2=1
x-y-xy=3
giải hệ pt \(\left\{{}\begin{matrix}x-3y+2\sqrt{xy}=4\left(\sqrt{x}-\sqrt{y}\right)\\\left(x+1\right)\left(y+\sqrt{xy}-x^2+x\right)=4\end{matrix}\right.\)
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
1) Giải hệ phương trình : \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
2) Giải phương trình
a) 3x2 - 2x - 1 = 0
b) x4 - 20x2 + 4 = 0