Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(B=\frac{1-2x}{x+3}\)
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(D=\frac{3}{\sqrt{x}-1}\)
D là số nguyên khi \(\sqrt{x}\) - 1 là số nguyên .
\(\Leftrightarrow\sqrt{x}-1\inƯ_3\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{\sqrt{2};2;0\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{;2;0\right\}\)
Vậy x = 2 ; x = 0
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(C=\frac{x^2+x+1}{x+1}\)
\(C=\frac{x^2+x+1}{x+1}=\frac{x.\left(x+1\right)+1}{x+1}=\frac{x.\left(x+1\right)}{x+1}+\frac{1}{x+1}=x+\frac{1}{x+1}\)
Để C nguyên thì \(\frac{1}{x+1}\) nguyên
=> 1 chia hết cho x + 1
=> \(x+1\inƯ\left(1\right)\)
=> \(x+1\in\left\{1;-1\right\}\)
=> \(x\in\left\{0;-2\right\}\)
Vậy \(x\in\left\{0;-2\right\}\) thỏa mãn đề bài
Tìm x\(\in\)Z để các biểu thức sau nhận giá trị là một số nguyên
\(E=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
điều kiện: x>=0 và x khác 1
E=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
muốn E nguyên thì \(\sqrt{x}+1\)={1,-1,-2,2}
\(\sqrt{x}-1=1\)=> x=4\(\sqrt{x}-1=-1\)=>x=0\(\sqrt{x}-1=-2\) VN\(\sqrt{x}-1=2\)=> x=9Vậy giá trị x là{0,4,9} thỏa đề bài
Bài 1: Cho biểu thức:
\(P=\left(\frac{x+1}{x-2}-\frac{2x}{x+2}+\frac{5x+2}{4-x^2}\right):\frac{3x-x^2}{x^2+4x+4}\)
a, Rút gọn biểu thức P
b, tìm x để |P|= 2
c, Tìm giá trị nguyên của x để P nhận giá trị là số nguyên
Bài 2:
a, Phân tích đa thức sau thành nhân tử:
\(\left(x+2\right)\left(2x^2-5x\right)-x^3-8\)
b, Cho x, y, z là các số nguyên khác 0 đôi một khác nhau thỏa mãn:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức:
\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Bài 3:Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(y\left(x-1\right)=x^2+2\)
tìm x thuộc z để các biểu thức sau nhận giá trị nguyên x^2-1/2x^2+1
Cho 2 biểu thức: \(A=\frac{4x-7}{x-2};B=\frac{3x^2-9x+2}{x-3}\)
a, Tìm x \(\in\)Z để mỗi biểu thức trên nhận giá trị là nguyên
b, Tìm x \(\in\)Z để cả 2 biểu thức trên nhận giá trị nguyên
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
bài của trà my sai chỗ
4x-8+1=4*(x-2)+1
1.cho A= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). tìm số nguyên x để A có giá trị là số nguyên
2.Tìm GTLN cỉa các biểu thức sau
E= \(\frac{27-2x}{12-x}\); x\(\in\)Z
Giúp minh với chiều nay mình phải nộp rồi.Cảm ơn nha
Tìm số nguyên x để các biểu thức sau nhận giá trị nguyên
B=\(\sqrt{X+1\frac{ }{ }\sqrt{X-3}}\).Tìm số nguyên x để B có giá trị là 1 số nguyên
x-3=k^2
x=k^2+3
x+1-k=t^2
k^2+4-k=t^2
(2k-1)^2+15=4t^2
(2k-1-2t)(2k-1+2t)=-15=-1.15=-3*5
---giải phương trình nghiệm nguyên với k,t---
TH1. [2(k-t)-1][2(k+t)-1]=-1.15
2(k-t)-1=-1=> k=t
4t-1=15=>t=4 nghiệm (-4) loại luôn
với k=4=> x=19 thử lại B=căn (19+1-can(19-3))=can(20-4)=4 nhận
TH2. mà có bắt tìm hết đâu
x=19 ok rồi
ô hay vừa giải xong mà
x=k^2+3
với k là nghiệm nguyên của phương trình
k^2-k+4=t^2
bắt tìm hết hạy chỉ một
x=19 là một nghiệm
Cho biểu thức Q = \(\frac{x+3}{2x+1}\)- \(\frac{x-7}{2x+1}\)
a, Thu gọn biểu thức Q
b, Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)
\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)
b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)
=> \(2x+1\inƯ\left(10\right)\)
=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Ta có bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 10 | -10 |
x | 0 | -1 | \(\frac{1}{2}\) (loại) | \(-\frac{3}{2}\)(loại) | \(\frac{3}{2}\)(loại) | \(-\frac{5}{2}\)(loại) | \(\frac{9}{2}\)(loại) | \(-\frac{11}{2}\)(loại) |
Vậy \(x\in\left\{0;-1\right\}\)