Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Edogawa Conan
Xem chi tiết
Lightning Farron
24 tháng 11 2016 lúc 22:24

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

Suy ra Đpcm

2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)

Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) suy ra Đpcm

 

binhbinhthd
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Trần Bình Như
30 tháng 10 2019 lúc 20:55

Ta có: b2 = ac

=> a/b = b/c (1)

Ta có: c2 = bd

=> b/c = c/d (2)

Từ (1) và (2)

=> a/b = b/c = c/d

=> a2/ b2 = c2 / b2 = c2/d2 = ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 (3)

( tính chất dãy tỉ số bằng nhau)

Ta có: a/b = b/c = c/d

=> a/b . b/c . c/d = (a/b)3 = a.b.c/b.d.c = a/d (4)

Từ (3) và (4)

=> ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 = a/d

chúc bạn hok tốt haha

Khách vãng lai đã xóa
Đặng Quốc Huy
Xem chi tiết
Akai Haruma
31 tháng 10 2019 lúc 18:15

Lời giải:
Từ \(b^2=ac; c^2=bd\Rightarrow \frac{b}{c}=\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{b}{c}=\frac{a}{b}=\frac{c}{d}=t\Rightarrow b=ct; a=bt; c=dt\)

Khi đó:

\(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(bt)^2+(ct)^2+(dt)^2}{b^2+c^2+d^2}=t^2(1)\)

\(\frac{(a+b+c)^2}{(b+c+d)^2}=\frac{(bt+ct+dt)^2}{(b+c+d)^2}=\frac{t^2(b+c+d)^2}{(b+c+d)^2}=t^2(2)\)

\(\frac{a}{d}=\frac{bt}{d}=\frac{ct.t}{d}=\frac{dt.t.t}{d}=t^3\)

Vậy \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(a+b+c)^2}{(b+c+d)^2}\) nhưng không bằng $\frac{a}{d}$ (trừ phi $t=1$)

Khách vãng lai đã xóa
Đặng Quốc Huy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 10 2019 lúc 18:26

Đề bài sai nhé

Đẳng thức này mới đúng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a}{d}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
30 tháng 10 2019 lúc 18:34

\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{d}=\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Khách vãng lai đã xóa
VU HIEU
Xem chi tiết
Nguyễn Huỳnh Tuấn Kiệt
1 tháng 11 2015 lúc 15:07

Ta có: a/b = c/d => a/b.c/d = c/d.c/d (vì các p/s nào bằng nhau nhân với mấy cũng bằng nhau)

hay: ac/d = c^2/d^2 (1)

Lại có: a/b = c/d = a^2/b^2 = c^2/d^2 = a^2+c^2/b^2+d^2 (2)

Từ (1) và (2) => ac/bd = a^2+c^2/b^2/d^2

Vương Thị Diễm Quỳnh
Xem chi tiết
Trần Thị Loan
18 tháng 10 2015 lúc 19:53

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Ap sdungj t/c của dãy tỉ số bằng nhau ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\left(\frac{a-b}{c-d}\right)^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\ne\frac{ac}{bd}\) nhé

Đề sai  bạn nhé

 

Vương Thị Diễm Quỳnh
18 tháng 10 2015 lúc 20:05

Đặt :\(\frac{a}{b}=\frac{c}{d}=k\)

=>\(a=b.k\)

    \(c=d.k\)

=> Vế Trái : \(\frac{a.c}{d.c}=\frac{b.b.k}{d.d.k}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

=> Vế phải:\(\frac{\left(a-b\right)^2}{\left(c-d^2\right)}=\frac{\left(b.k-b\right)^2}{\left(d.k-d\right)^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)

Vì \(\frac{b^2}{d^2}=\frac{b^2}{d^2}\) Nên \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)

ai thấy đúng thì tick nha

Nguyễn Thị Linh Chi
Xem chi tiết
ST
22 tháng 11 2017 lúc 20:15

C1: Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(1\right)\)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) => đpcm

C2: 

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{c}{d}=\frac{a+c}{b+d}\cdot\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Thanh Tùng DZ
22 tháng 11 2017 lúc 20:15

C1 : 

Ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

C2 : đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\)a = bk ; c = dk

Thay vào ,ta được :

\(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)( 1 )

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)}=\frac{\left(bk\right)^2+2.bk.dk+\left(dk\right)^2}{b^2+2bd+d^2}=\frac{k^2.\left(b^2+2bd+d^2\right)}{b^2+2bd+d^2}=k^2\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

Nguyễn Thị Ngọc Yến TT
Xem chi tiết
NHK
30 tháng 9 2019 lúc 21:11

cái này dễ mà

NHK
30 tháng 9 2019 lúc 21:12

kiến thức trong sách í

Nguyễn Thị Ngọc Yến TT
30 tháng 9 2019 lúc 21:23

giúp mình đi