Tìm x :
a ) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Tìm x biết :
a) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
b) \(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^3+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)
c) \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)+\left(x+4\right)^2\)
d) \(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) (x-2)3+6(x+1)2-x3+12=0
⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0
⇒ 24x+10=0
⇒ 24x=-10
⇒ x=-5/12
a.
PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)
b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.
c.
PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$
$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý)
Do đó pt vô nghiệm.
d.
PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$
$\Leftrightarrow 11x+3=-54x-97$
$\Leftrightarrow 65x=-100$
$\Leftrightarrow x=\frac{-20}{13}$
Tìm x, biết
a,\(\left(x^2+2x\right)^2-2x^2-4x=\)3
b,\(\left(x+\frac{1}{2}\right)^2-\left(x+\frac{1}{2}\right)\left(x+6\right)=8\)
c,\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
d,\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x^2-4\right)=1\)
e,\(3x^2+7x=10\)
g,\(\left(3x+5\right)\left(2x-1\right)-6x\left(x+2\right)=x\)
h,\(2\left(x+3\right)-x^2-3x=0\)
i,\(x^3-5x^2-14x=0\)
tìm x biết
a.\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)6\left(x+1\right)^2=49\)49
b.\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=25\)
c.\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
tìm GTLN
a)\(A=x^2+5y^2+2xy-4x-8y+2015\)
b)\(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
c)\(C=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
d)\(D=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
Bạn xem lại đề nhé.
a) \(A=x^2+5y^2+2xy-4x-8y+2015\)
\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)
\(A=\left(x-2-y\right)^2+4y^2+2011\)
Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)
\(\Rightarrow A_{min}=2011\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)
\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)
\(B=2x^2+2x+2012^2+2013^2\)
\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)
\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)
\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)
Tìm nghiệm đa thức sau:
\(a.B\left(x\right)=\left(x+\frac{1}{2}\right).\left(x-3\right)\\ b.D\left(x\right)=x^2-x\\ c.E\left(x^3+8\right)\\ d.F\left(x\right)=2x-5+\left(x-17\right)\)
\(e.C\left(x\right)=x^2-9\\ f.A\left(x\right)=x^2-4x\\ g.H\left(x\right)=\left(2x+4\right).\left(7-14x\right)\)
\(h.G\left(x\right)=\left(3x-5\right)-\left(18-6x\right)\)
a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0
nên x + 1/2 = 0 hoặc x-3 = 0
vậy x = -1/2 và x = 3
Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3
b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0
Vậy x = 0 hoặc x = 1
Đa thức D(x) có 2 nghiệm là x1= 0 và x2 = 1
c, Thay E(x) = 0
nên x3 + 8 = 0 => x3 = -8 => x = -2
Vậy đa thức E(x) có 1 nghiệm là x = -2
d, Thay F(x) = 0 nên 2x - 5 + (x-17) = 0
=> 2x - 5 + x - 17 = 0
=> 3x -22 = 0
=> 3x = 22
x = 22/3
Vậy đa thức F(x) có 1 nghiệm là x = 22/3
e, Thay C(x) = 0 nên x2 - 9 = 0
x2 = 9 => x = 3 hoặc x = -3
Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3
f, Thay A(x) = 0 nên x2 - 4x = 0
=> x.(x - 4) = 0
=> x = 0 và x = 4
Vậy đa thức A(x) có 2 nghiệm là x1=0 và x2 = 4
g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0
Vậy 2x + 4 = 0 và 7-14x =0
=> x = -2 và x = 1/2
Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2
h, G(x) = 0 nên (3x-5) - (18-6x) = 0
=> 3x - 5 - 18 + 6x = 0
=> 9x - 23 = 0
=> 9x = 23
x = 23/9
Vậy đa thức này có 1 nghiệm là x = 23/9
a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)
B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)
Vậy nghiệm của B(x) là -1/2 và 3
b) D(x) = \(x^2-x\)
D(x) = 0 <=> \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy nghiệm của D(x) là 0 và 1
c) E(x) = \(x^3+8\)
E(x) = 0 <=> x3 + 8 = 0
<=> x3 = -8
<=> x3 = -23
<=> x = 3
Vậy nghiệm của E(x) là 3
d) F(x) = 2x - 5 + ( x - 17 )
F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0
<=> 2x + x + ( -5 - 17 ) = 0
<=> 3x - 22 = 0
<=> 3x = 22
<=> x = 22/3
Vậy nghiệm của F(x) là 22/3
f) A(x) = x2 - 4x
A(x) = 0 <=> x2 - 4x = 0
<=> x( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy nghiệm của A(x) là 0 và 4
g) H(x) = ( 2x + 4 )( 7 - 14x )
H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )
<=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
Vậy nghiệm của H(x) là -2 và 1/2
h) G(x) = ( 3x - 5 ) - ( 18 - 6x )
G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0
<=> 3x - 5 - 18 + 6x = 0
<=> 3x - 23 = 0
<=> 3x = 23
<=> x = 23/3
Vậy nghiệm của G(x) là 23/3
#Mingg nhầm đoạn cuối tí
h) <=> 9x - 23 = 0
<=> 9x = 23
<=> x = 23/9
Vậy nghiệm của G(x) là 23/9
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Tìm x:
a. \(\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\)
b. \(-5\left(x+3\right)^2+\left(x-1\right)\left(x+1\right)+\left(2x-3\right)^2=\left(5x-2\right)^2-5x\left(5x+3\right)\)
\(a,\left(3x+4\right)\left(3x-4\right)-\left(2x+5\right)^2=\left(x-5\right)^2+\left(2x+1\right)^2-\left(x^2-2x\right)+\left(x-1\right)^2\\ \Leftrightarrow\left(9x^2-16\right)-\left(4x^2+20x+25\right)=x^2-10x+25+4x^2+4x+1-x^2+2x+x^2-2x+1\\ \Leftrightarrow9x^2-16-4x^2-20x-25=5x^2-6x+27\\ \Leftrightarrow5x^2-20x-41=5x^2-5x+27\\ \Leftrightarrow-15x=68\\ \Leftrightarrow x=-\dfrac{68}{15}\)Vậy..
Câu sau cũng tương tự nhé