Tìm các số C và \(\beta\) sao cho :
\(\sin\alpha-\cos\alpha=C\cdot sin\left(\alpha+\beta\right)\) Với mọi \(\alpha\)
1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Cho các góc \(\alpha,\beta\) nhọn và \(\alpha< \beta\)
Chứng minh rằng: \(\sin\left(\beta-\alpha\right)\)=\(\cos\beta\cdot\cos\alpha+\sin\beta\cdot\sin\alpha\)
CHỈ CÓ CÔNG THỨC :\(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
viết cái đề mà cũng không đúng thì người khác trả lời làm sao hiểu nổi
cho các góc α và β nhọn , α < β. Cmr:
a ) cos(β - α)=cosβcosα +sinβsinα
b) sin(β - α)=sinβcosα - sinβsinα
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
Từ công thức cộng, hãy tính tổng và hiệu của:
a) \(\cos \left( {\alpha - b} \right)\) và \(\cos \left( {\alpha + \beta } \right)\);
b) \(\sin \left( {\alpha - \beta } \right)\)và \(\sin \left( {\alpha + \beta } \right)\).
a,
\(\begin{array}{l}\cos \left( {\alpha - b} \right) + \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta + \cos \alpha \cos \beta - \sin \alpha sin\beta \\ = 2\cos \alpha \cos \beta \end{array}\)
\(\begin{array}{l}\cos \left( {\alpha - b} \right) - \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta - \cos \alpha \cos \beta + \sin \alpha sin\beta \\ = 2\sin \alpha sin\beta \end{array}\)
b,
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) - \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta - \sin \alpha \cos \beta - \cos \alpha sin\beta \\ = - 2\cos \alpha sin\beta \end{array}\)
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta + \sin \alpha \cos \beta + \cos \alpha sin\beta \\ = 2\sin \alpha \cos \beta \end{array}\)
1.Cho \(\alpha,\beta\left(\alpha\ne\beta\right)\in\left(0;\dfrac{\pi}{2}\right)\)và thỏa mãn điều kiện \(\dfrac{cosx-cos\alpha}{cosx-cos\beta}=\dfrac{sin^2\alpha cos\beta}{sin^2\beta cos\alpha}\)
(giả sử \(x\) xác định). Chứng minh\(tan^2\dfrac{x}{2}=tan^2\dfrac{\alpha}{2}tan^2\dfrac{\beta}{2}\)
2. Giải hệ phương trình \(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\end{matrix}\right.\)
3. Cho ba số thực dương a, b, c thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+3}+\dfrac{1}{c+4}=1\). Tìm Min của biểu thức \(P=a+b+c+\dfrac{4}{\sqrt[3]{a\left(b+1\right)\left(c+2\right)}}+3\)
4. Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+9\le\left|x-6\right|\\x^2+2x-3m^2+4\left|m\right|-4\le0\end{matrix}\right.\)
2.
ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)
\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)
\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)
\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))
Nếu \(y=1\), khi đó:
\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)
Phương trình này vô nghiệm
Nếu \(y=2x-1\), khi đó:
\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))
\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)
Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)
Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\); \(2x>0\)
\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)
Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)
Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.
Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)
Cho hai góc nhọn \(\alpha\)và \(\beta\)sao cho \(\alpha+\beta< 90\)độ .
CMR: \(\sin\left(\alpha+\beta\right)=\sin\alpha\times\cos\beta+\sin\beta\times\cos\alpha\)
Cho \(\alpha-\beta=\frac{\pi}{3}\). Tính giá trị bthuc
a) \(A=\left(cos\alpha+cos\beta\right)^2+\left(sin\alpha+sin\beta\right)^2\)
b) \(B=\left(cos\alpha+sin\beta\right)^2+\left(cos\beta-sin\alpha\right)^2\)
\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)
\(=2+2\left(cosa.cosb+sina.sinb\right)\)
\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)
\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)
\(=2-2\left(sina.cosb-cosa.sinb\right)\)
\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)
rút gọn biểu thức
K= \(\frac{sin\left(\alpha+\beta\right)+sin\alpha+sin\beta}{cos\left(\alpha+\beta\right)+cos\alpha+cos\beta+1}\)
\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)
\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)
\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)