Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Anh
Xem chi tiết
Như Thảo
Xem chi tiết
nguyen ngoc song thuy
13 tháng 3 2017 lúc 21:49

CHỈ CÓ CÔNG THỨC :\(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)

viết cái đề mà cũng không đúng thì người khác trả lời làm sao hiểu nổioe

dbrby
Xem chi tiết
le thi khanh huyen
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 21:38

a,

\(\begin{array}{l}\cos \left( {\alpha  - b} \right) + \cos \left( {\alpha  + \beta } \right)\\ = \cos \alpha \cos \beta  + \sin \alpha sin\beta  + \cos \alpha \cos \beta  - \sin \alpha sin\beta \\ = 2\cos \alpha \cos \beta \end{array}\)

\(\begin{array}{l}\cos \left( {\alpha  - b} \right) - \cos \left( {\alpha  + \beta } \right)\\ = \cos \alpha \cos \beta  + \sin \alpha sin\beta  - \cos \alpha \cos \beta  + \sin \alpha sin\beta \\ = 2\sin \alpha sin\beta \end{array}\)

b,

\(\begin{array}{l}\sin \left( {\alpha  - \beta } \right) - \sin \left( {\alpha  + \beta } \right)\\ = \sin \alpha \cos \beta  - \cos \alpha sin\beta  - \sin \alpha \cos \beta  - \cos \alpha sin\beta \\ =  - 2\cos \alpha sin\beta \end{array}\)

\(\begin{array}{l}\sin \left( {\alpha  - \beta } \right) + \sin \left( {\alpha  + \beta } \right)\\ = \sin \alpha \cos \beta  - \cos \alpha sin\beta  + \sin \alpha \cos \beta  + \cos \alpha sin\beta \\ = 2\sin \alpha \cos \beta \end{array}\)

Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 16:51

2.

ĐK: \(2x-y\ge0;y\ge0;y-x-1\ge0;y-3x+5\ge0\)

\(\left\{{}\begin{matrix}xy-2y-3=\sqrt{y-x-1}+\sqrt{y-3x+5}\left(1\right)\\\left(1-y\right)\sqrt{2x-y}+2\left(x-1\right)=\left(2x-y-1\right)\sqrt{y}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(1-y\right)\sqrt{2x-y}+y-1+2x-y-1-\left(2x-y-1\right)\sqrt{y}=0\)

\(\Leftrightarrow\left(1-y\right)\left(\sqrt{2x-y}-1\right)+\left(2x-y-1\right)\left(1-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(1+\sqrt{y}\right)+\left(\sqrt{2x-y}-1\right)\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}+1\right)=0\)

\(\Leftrightarrow\left(1-\sqrt{y}\right)\left(\sqrt{2x-y}-1\right)\left(\sqrt{y}+\sqrt{2x-y}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=2x-1\end{matrix}\right.\) (Vì \(\sqrt{y}+\sqrt{2x-y}+2>0\))

Nếu \(y=1\), khi đó:

\(\left(1\right)\Leftrightarrow x-5=\sqrt{-x}+\sqrt{-3x+6}\)

Phương trình này vô nghiệm

Nếu \(y=2x-1\), khi đó:

\(\left(1\right)\Leftrightarrow2x^2-5x-1=\sqrt{x-2}+\sqrt{4-x}\) (Điều kiện: \(2\le x\le4\))

\(\Leftrightarrow2x\left(x-3\right)+x-3+1-\sqrt{x-2}+1-\sqrt{4-x}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1\right)=0\)

Ta thấy: \(1+\sqrt{x-2}\ge1\Rightarrow-\dfrac{1}{1+\sqrt{x-2}}\ge-1\Rightarrow1-\dfrac{1}{1+\sqrt{x-2}}\ge0\)

Lại có: \(\dfrac{1}{1+\sqrt{4-x}}>0\)\(2x>0\)

\(\Rightarrow\dfrac{1}{1+\sqrt{4-x}}-\dfrac{1}{1+\sqrt{x-2}}+2x+1>0\)

Nên phương trình \(\left(1\right)\) tương đương \(x-3=0\Leftrightarrow x=3\Rightarrow y=5\)

Ta thấy \(\left(x;y\right)=\left(3;5\right)\) thỏa mãn điều kiện ban đầu.

Vậy hệ phương trình đã cho có nghiệm \(\left(x;y\right)=\left(3;5\right)\)

Trần ngô hạ uyên
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 16:49

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=2+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)

\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)

\(=2-2\left(sina.cosb-cosa.sinb\right)\)

\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)

Ly My
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2019 lúc 17:04

\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)