1 .phân tích đa thức thành nhân tử bằng phương pháp ẩn phụ
x^4 - x^3- 9x^2 -16X - 10 - b
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ:
x(x+2)(x+4)(x+6)-9
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)
\(=\left(x^2+6x\right)^2+8\left(x^2+6x\right)-9\)
\(=\left(x^2+6x+9\right)\left(x^2+6x-1\right)\)
\(=\left(x+3\right)^2\cdot\left(x^2+6x-1\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
a, (x^2 - 8)^2 + 36
b, 81. x^4 + 4
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
x^3 - 5x^2 + 8x - 4
x^3 - 9x^2 + 6x +16
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ:
a) 36 x 6 − 24 x 3 + 4 ;
b) ( x 2 - 1 ) 2 - 18(x + l)(x -1);
c) (x + l)(x + 3)(x + 5)(x + 7) +15;
d) ( x 2 + x + 4 ) 2 + 8x( x 2 + x + 4) + 15 x 2 .
phân tích đa thức thành nhân tử bằng phương pháp ẩn phụ
a) x^4 -x^3 - 13x^2 - 31x - 20
b) x^4 - 2x^2 - 2x^2 - 3x^2 + 16 x + 6
a: \(=x^4-5x^3+4x^3-20x^2+7x^2-35x+4x-20\)
\(=\left(x-5\right)\left(x^3+4x^2+7x+4\right)\)
\(=\left(x-5\right)\left(x^3+x^2+3x^2+3x+4x+4\right)\)
\(=\left(x-5\right)\left(x+1\right)\left(x^2+3x+4\right)\)
b: Đề sai rồi bạn
1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
x^4.y^4 - z^4
(x+y+z)^2 - 4z^2
-1/9x^2 + 1/3xy - 1/4y^2
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Câu trả lời của cô quá đúng luôn đấy
a) Ta có: \(x^4y^4-z^4\)
\(=\left(x^2y^2-z^2\right)\left(x^2y^2+z^2\right)\)
\(=\left(xy-z\right)\left(xy+z\right)\left(x^2y^2+z^2\right)\)
b) Ta có: \(\left(x+y+z\right)^2-4z^2\)
\(=\left(x+y+z-2z\right)\left(x+y+z+2z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z\right)\)
giúp mình với!!!
Phân tích đa thức thành nhân tử(bằng phương pháp đặt ẩn phụ):
a) (x-2)(x-4)(x-6)(x-8)+4
b) (x+4)(x+7)(x+10)(x+13)+8
c) (x^2-2x)(x^2-2x-1)