Tìm giá trị nhỏ nhất của \(A=\left(3x-1\right)^2-4\left|3x-1\right|+5\)
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
A=(\(x\)-4)\(^2\)+1 B=\(\left|3x-2\right|\)-5 C=5-(2\(x\)-1)\(^4\)
D=-3(\(x\)-3)\(^2\)-(y-1)\(^2\)-2021 E=-\(\left|x^2-1\right|\)-(\(x\)-1)\(^2\)-y\(^2\)-2020
giúp mình với bài * khó quá
$A=(x-4)^2+1$
Ta thấy $(x-4)^2\geq 0$ với mọi $x$
$\Rightarroe A=(x-4)^2+1\geq 0+1=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
-------------------
$B=|3x-2|-5$
Vì $|3x-2|\geq 0$ với mọi $x$
$\Rightarrow B=|3x-2|-5\geq 0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $3x-2=0\Leftrightarrow x=\frac{2}{3}$
$C=5-(2x-1)^4$
Vì $(2x-1)^4\geq 0$ với mọi $x$
$\Rightarrow C=5-(2x-1)^4\leq 5-0=5$
Vậy $C_{\max}=5$. Giá trị này đạt tại $2x-1=0\Leftrightarrow x=\frac{1}{2}$
----------------
$D=-3(x-3)^2-(y-1)^2-2021$
Vì $(x-3)^2\geq 0, (y-1)^2\geq 0$ với mọi $x,y$
$\Rightarrow D=-3(x-3)^2-(y-1)^2-2021\leq -3.0-0-2021=-2021$
Vậy $D_{\max}=-2021$. Giá trị này đạt tại $x-3=y-1=0$
$\Leftrightarrow x=3; y=1$
$E=-|x^2-1|-(x-1)^2-y^2-2020$
Ta thấy:
$|x^2-1|\geq 0; (x-1)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow E=-|x^2-1|-(x-1)^2-y^2-2020\leq -0-0-0-2020=-2020$
Vậy $E_{\min}=-2020$. Giá trị này đạt tại $x^2-1=x-1=y=0$
$\Leftrightarrow x=1; y=0$
1) Tìm giá trị nhỏ nhất của biểu thức, biết:
\(A=\left(6x-2\right)^2+10\)
\(B=\left(3x+12\right)^2-100\)
tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2-1+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(A_{min}=2016\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
ai thấy mình làm đúng thì k cho mình nha!
A=\(\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
ĐẶT \(2x^2-3x=t\)
\(\Leftrightarrow\left(t+1\right)\left(t-1\right)+2017\)
\(\Leftrightarrow t^2-1+2017\)
\(\Leftrightarrow t^2+2016\ge2016\left(do.t^2\ge0\right)\)
DẤU ''='' XẢY RA KHI VÀ CHỈ KHI \(t^2=0\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=0\end{cases}}\)
VẬY GTNN CỦA A LÀ 2016 TẠI X=0 HOẶC X=3/2
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
Tìm giá trị nhỏ nhất của biểu thức:
A = \(\left|2x+1\right|\)+ \(\left|3x-4\right|\)+ \(\left|2x-5\right|\)+ 5
Vì \(\left|2x+1\right|\ge0;\left|3x-4\right|\ge0;\left|2x-5\right|\ge0\)
\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|\ge0\)
\(\Rightarrow\left|2x+1\right|+\left|3x-4\right|+\left|2x-5\right|+5\ge5\)
\(\Rightarrow A\ge5\)
\(\Rightarrow\)Giá trị nhỏ nhất của A là 5
Tìm tất cả các giá trị \(m\) để giá trị nhỏ nhất của hàm số:
1/ \(y=\dfrac{x+m}{x-1}\) trên \(\left[2;4\right]\) bằng 3.
2/ \(y=2x^3-3x^2-m\) trên \(\left[-1;1\right]\) bằng 1.
3/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 2.
Cho -1 < x < 1. Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{\left(3x-5\right)^2}{1-x^2}\).
*Giúp mình nhanh với*
Tìm giá trị nhỏ nhất của
a) \(A=2\left|3x-2\right|-1\)
b)\(B=5\left|1-4x\right|-1\)