Đặt \(y=\left|3x-1\right|,y\ge0\) thì
\(A=y^2-4y+5=\left(y^2-4y+4\right)+1=\left(y-2\right)^2+1\ge1\)
Min A = 1 <=> y = 2 <=> |3x-1| = 2 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{1}{3}\end{array}\right.\)
Đặt \(y=\left|3x-1\right|,y\ge0\) thì
\(A=y^2-4y+5=\left(y^2-4y+4\right)+1=\left(y-2\right)^2+1\ge1\)
Min A = 1 <=> y = 2 <=> |3x-1| = 2 \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{1}{3}\end{array}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
a. A = x^2 - 3x + 5
b. C = x^2 - 2x + y^2 - 4y + 7
c. D = (x - 1)(x + 2)(x + 3)(x + 6)
d.E= \(\left|2x-3\right|+\left|2x-7\right|\)
\(\text{Cho A}=\frac{2}{x-2}-\frac{2}{\left(x-2\right)\left(x+1\right)}.\left(1+\frac{3x+x^2}{x+3}\right)\)
a,Tìm ĐKXĐ của x
b,Chứng tỏ giá trị của A không phụ thuộc vào giá trị của x
Câu 1:Biết rằng: 12+22+32+...+102=385. Tính tổng: S= 22+42+...+202
Câu 2:Tìm x thỏa mãn:\(\left|3x+1\right|>4\)
Câu 3:Tìm giá trị nhỏ nhất của biểu thức: A=\(\left|x\right|+\left|8-x\right|\)
Chúc các bạn làm tốt! Chúc các bạn học tốt! Chúc mừng các bạn lên bảng xếp hạng!
B1 ( kết quả thôi ko cần lời giải)
a) \(\left(4x-3\right)\left(3x+2\right)-\left(6x+1\right)\left(2x-5\right)+1\)
b) \(\left(3x+4\right)^2+\left(4x-1\right)^2+\left(2+5x\right)\left(2-5x\right)\)
c) \(\left(2x+1\right)\left(4x^2-2x+1\right)+\left(2-3x\right)\left(4+6x+9x^2\right)-9\)
B2 tìm x(kết quả)
a) \(3x\left(x-4\right)-x\left(5+3x\right)=-34\)
b) \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
c) \(x^3+3x^2+3x+28=0\)
Tìm giá trị nhỏ nhất của
a1) A=\(x^2+3x+7\)
a2)B=(x-2)(x-5)\(\left(x^2-7x-10\right)\)
Bài 1: Tìm giá trị lớn nhất, giá trị nhỏ nhất của các biểu thức sau:
a/ \(A=\left(x+1\right)\cdot\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-6\right)\)
b/ \(B=19-6x-9x^2\)
Tìm giá trị nhỏ nhất của : \(\left(x^2-1\right)\left(x^2-9\right)\)
cho phân thức \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}\)
a/ tìm điều kiện của x để giá trị của phân thức A được xác định
b/ tìm x để giá trị của phân thức bằng 3
Cho \(A=\frac{x^2}{2x-1}\left(\frac{4x^2+1}{x}-4\right)+4\).Tìm giá trị nhỏ nhất của A ?