Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.
Cho hàm số \(f\left(x\right)=\dfrac{x-m^2}{x+8}\)với m là tham số cực . Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \(\left[0;3\right]=2\)
Có bao nhiêu giá trị thực của tham số m để hàm số y = \(\left|x^2+mx+1\right|\) trên [-1;2] đạt giá trị nhỏ nhất bằng 1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau :
a) \(f\left(x\right)=-3x^2+4x-8\) trên đoạn \(\left[0;1\right]\)
b) \(f\left(x\right)=x^3+3x^2-9x-7\) trên đoạn \(\left[-4;3\right]\)
c) \(f\left(x\right)=\sqrt{25-x^2}\) trên đoạn \(\left[-4;4\right]\)
d) \(f\left(x\right)=\left|x^2-3x+2\right|\) trên đoạn \(\left[-10;10\right]\)
e) \(f\left(x\right)=\dfrac{1}{\sin x}\) trên đoạn \(\left[\dfrac{\pi}{3};\dfrac{5\pi}{6}\right]\)
g) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3\pi}{2}\right]\)
Tìm giá trị lớn nhất và nhỏ nhất của hàm số :
1. \(f\left(x\right)=e^{2-3x}\) trên đoạn \(\left[0;2\right]\)
2. \(f\left(x\right)=e^{\sqrt{1-x^2}}\) trên đoạn \(\left[-1;1\right]\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau :
a) \(y=\dfrac{x}{4+x^2}\) trên khoảng \(\left(-\infty;+\infty\right)\)
b) \(y=\dfrac{1}{\cos x}\) trên khoảng \(\left(\dfrac{\pi}{x};\dfrac{3\pi}{2}\right)\)
c) \(y=\dfrac{1}{1+x^4}\) trên khoảng \(\left(-\infty;+\infty\right)\)
d) \(y=\dfrac{1}{\sin x}\) trên khoảng \(\left(0;\pi\right)\)Tìm giá trị lớn nhất và nhỏ nhất của hàm số :
1. \(f\left(x\right)=e^x\left(x^2-x-1\right)\) trên đoạn \(\left[0;3\right]\)
2. \(f\left(x\right)=x-e^{2x}\) trên đoạn \(\left[-1;0\right]\)
Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là
A.6
B.2
C.1
D.4
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+\dfrac{9}{x}\) trên đoạn \(\left[2;4\right]\) ?