Cho n số x1 , x2 , x3,...,xn có giá trị là 1 hoặc -1. Biết: x1.x2+x2.x3+...+ xn.x1=0
CMR: n\(⋮\)4
cho n số x1,x2,x3..,xn mỗi số nhận giá trị 1 hoặc -1 . Chungws minh rằng nếu x1.x2+x3.x4+...+xn.x1=0 thì n chia hết cho 4
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
giải được tui cho chàng vỗ tay
Cho n số x1, x2, ..., xn ,mỗi số nhận giá trị 1 hoặc -1.
Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Lời giải:
Vì $x_1,x_2,...,x_n$ nhận giá trị $1$ hoặc $-1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ nhận giá trị $1$ hoặc $-1$
Để tổng $x_1x_2+...+x_nx_1=0$ thì số số hạng nhận giá trị $1$ bằng số số hạng nhận giá trị $-1$
Gọi số số hạng nhận giá trị $1$ và số số hạng nhận giá trị $-1$ là $k$
Tổng số số hạng: $n=k+k=2k$
Lại có:
$(-1)^k1^k=x_1x_2.x_2x_3...x_nx_1=(x_1x_2...x_n)^2=1$
$\Rightarrow k$ chẵn
$\Rightarrow n=2k\vdots 4$
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Lời giải:
Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng
$\Rightarrow n$ chia hết cho $2$
Mặt khác:
\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n$ chia hết cho $4$ (đpcm)
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên.
Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4
Cho n số x1,x2,...,xn mỗi số nhận giá trị 1 hoặc -1 .Chứng minh rằng nếu x1.x2+x2.x3+..+xn.x1=0 thì n chia hết cho 4( dấu . là nhân nha )
Theo giả thiết suy ra các tích x1x2 , x2x3 , ...., xnx1 chỉ nhận một trong hai giá trị là 1 và -1
Do đó x1x2 + x2x3 +...+ xnx1 = 0 <=> n = 2m
=> Đồng thời có m số hạng bằng 1 và m số hạng bằng -1
Nhận thấy : (x1x2)(x2x3)...(xnx1) = x12x22...xn2 = 1
=> Số các số hạng bằng -1 phải là số chẵn
=> m = 2k
Suy ra n = 2m = 2.2k = 4k
=> n chia hết cho 4
Cho n số x1 , x2 , .. xn mỗi số nhận giá trị 1 hoặc -1 .
Cm : x1 . x2 + x2 . x3 + ... + xn.x1 = 0 thì n chia hết cho 4
Bạn tham khảo link:
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath