Cho a + b > 1 . CMR \(a^4+b^4>\frac{1}{8}\)
cho a+b=1
CMR \(a^4+b^4\ge\frac{1}{8}\)
Ta có: \(a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\ge\left(\frac{1}{2}\right)^2\)
Và: \(a^4-2a^2b^2+b^4=\left(a^2-b^2\right)^2\ge0\)
Và: \(2\left(a^4+b^4\right)\ge\frac{1}{4}\)
\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(đpcm\right)\)
Ta có \(a+b=1\Leftrightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\left(1\right)\)
Lại có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\left(2\right)\)
Cộng từng vế (1) và (2) ta được : \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge\frac{1}{4}\Leftrightarrow a^4+2a^2b^2+b^4\ge\frac{1}{4}\left(3\right)\)
Mặt khác: \(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\left(4\right)\)
Cộng từng vế (3) và (4) ta được
\(2\left(a^4+b^4\right)\ge\frac{1}{4}\Leftrightarrow a^4+b^4\ge\frac{1}{8}\)
Bđt được chứng minh
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
cho a, b>0 thỏa mãn a+b=1. CMR:\(8\left(a^4+b^4\right)+\frac{1}{ab}\ge5\)
Cho 4(a+b+c)=3abc
CMR \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{8}\)
Lời giải:
Từ \(4(a+b+c)=3abc\Rightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{4}\)
Áp dụng BĐT AM-GM cho các số dương ta có:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{8}\geq 3\sqrt[3]{\frac{1}{a^3}.\frac{1}{b^3}.\frac{1}{8}}=\frac{3}{2}.\frac{1}{ab}\)
\(\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{bc}\)
\(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{8}\geq \frac{3}{2}.\frac{1}{ac}\)
Cộng theo vế các BĐT vừa thu được:
\(2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\geq \frac{3}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)-\frac{3}{8}=\frac{3}{2}.\frac{3}{4}-\frac{3}{8}=\frac{3}{4}\)
\(\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\geq \frac{3}{8}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=2$
2) cho a+b>1. CMR: \(a^4+b^4>\frac{1}{8}\) .
ta có \(\left(a+b\right)^2\ge4ab\) mà \(a+b=1\)
=>\(ab
tick cho mình cái mình trả lời rồi mà.
Cho \(\frac{\sin^4\beta}{a}+\frac{\cos^4\beta}{b}=\frac{1}{a+b}\) với a,b là sô hữ tỉ khác 0; a+b khác 0
CMR \(\frac{\sin^8\beta}{a^3}+\frac{\cos^8\beta}{b^3}=\frac{1}{\left(a+b\right)^3}\)
Cho a,b>4 .CMR: a4+b4>\(\frac{1}{8}\)
Cho a,b,c dương và abc=1
CMR: \(\frac{a^4}{2\left(b+c\right)^2}+\frac{b^4}{2\left(a+c\right)^2}+\frac{c^4}{2\left(a+b\right)^2}+\frac{1}{c^2\left(a+c\right)\left(a+b\right)}+\frac{1}{b^2\left(a+b\right)\left(b+c\right)}+\frac{1}{a^2\left(a+c\right)\left(a+b\right)}\ge\frac{1}{8}\)
cho a,b,c là các soos dương thỏa mãn 4(a+b+c)=3abc.
CMR \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}>=\frac{3}{8}\)
Từ \(4\left(a+b+c\right)=3abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{4}\)
Áp dụng BĐT AM-GM:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{8}\ge3\sqrt[3]{\frac{1}{a^3}\cdot\frac{1}{b^3}\cdot\frac{1}{8}}=\frac{3}{2ab}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(2VT+\frac{3}{8}\ge\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=\frac{9}{8}\)
\(\Leftrightarrow2VT\ge\frac{3}{4}\Leftrightarrow VT\ge\frac{3}{8}=VP\)
\("="\Leftrightarrow a=b=c=2\)
thắng nguyễn , e tưởng Bất đẳng thức AM-AG khác cô si chứ
vd nhé cho a+b+c=3 ( dự đoán a=b=c=1
áp dụng BDT AM-AG
ta có
\(3a+3-2\ge2\sqrt[3]{9a}-2=6-2=4\)
tức là ở đề bài cho 1a mình + thêm 2a tức là a+2a=3a thì mình phải trừ đi 2( vì a=1) để cho BDT vẫn như cũ chứ @@