Phân tích đa thức thành nhân tử :
a) (y3+8) +(y2-4)
b) x6-1
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
Phân tích các đa thức sau thành nhân tử
d ) ( y 3 + 8 ) + ( y 2 – 4 )
d) (y3 + 8) + ( y2 – 4) =(y3 + 23) + ( y2 – 22)
= (y + 2)(y2 – 2y + 4) + (y + 2)( y – 2)
= (y + 2)(y2 – 2y + 4 + y – 2) = (y + 2)(y2 – y + 2)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 4x + 1; b) 16 y 3 - 2 x 3 - 6x(x + 1) - 2;
c) 2 x 2 +7x + 5; d) x 2 - 6xy - 25 z 2 +9 y 2
Phân tích các đa thức sau thành nhân tử:
a) 5 x 3 - 3 x 2 y - 45x y 2 + 27 y 3 ;
b) 3 x 2 (a - b + c) + 36xy(a - b + c) + 108 y 2 (a - b + c);
c) x 2 -2xy + y 2 - 4 m 2 + 4mn - n 2
a) (5x - 3y)(x - 3y)(x + 3y).
b) 3(a – b + c) ( x + 6 y ) 2 .
c) (x-y-2m + n)(x-y + 2m-n)
phân tích các đa thức thành nhân tử
a) x2-2xy +y2-z2
b) x3+y3+2x2-2xy+2y2
\(a,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right).\left(x-y+z\right)\)
\(b,x^3+y^3+2x^2-2xy+2y^2=\left(x^3+y^3\right)+2\left(x^2-xy+y^2\right)=\left(x+y\right).\left(x^2-2xy+y^2\right)+2.\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right).\left(x+y+2\right)\)
Phân tích đa thức thành nhân tử:
a) x 2 - 10x + 9; b) 2 x 2 - 5x + 2;
c) 3 x 2 - 10xy + 3 y 2 ; d) 2xy - x 2 + 3 y 2 - 4y + 1;
g) 4x16 + 81; e) 8 x 2 - 12xy + 4 y 2 - 2x - 1;
h) 625 t 9 + 75 t 3 + 9;
i) ( 5 - y ) 6 - 2(125 - 75y + 15 y 2 - y 3 ) +1;
k) x 4 + 2018 x 2 + 2017x + 2018.
Phân tích các đa thức sau thành nhân tử:
a) ( 4 t + 2 ) 3 + 8 ( 1 - 2 t ) 3 ; b) x 3 + y 3 - z 3 +3xyz.
a) 16(12 t 2 +1).
b) Gợi ý x 3 + y 3 = ( x + y ) 3 - 3xy(x + y)
(x + y - z)( x 2 + y 2 + z 2 - xy + xz + yz).
phân tích đa thức thành nhân tử
y4-y3+y2-y
(a2+b2)2 - 4a2b2
a4- b4
64m3+8y3
b) \(\left(a^2+b^2\right)^2-4a^2b^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
\(=\left(a-b\right)^2\cdot\left(a+b\right)^2\)
c) \(a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
a) \(y^4-y^3+y^2-y\)
\(=y^3\left(y-1\right)+y\left(y-1\right)\)
\(=y\left(y-1\right)\left(y^2+1\right)\)
d) \(64m^3+8y^3=\left(4m+2y\right)\left(16m^2-8my+4y^2\right)\)
Bài 4. Phân tích các đa thức sau thành nhân tử:
a) 36x3 y3 - 42x2 y2
b) 3x4 y2 + 15x2 y -18xy
c) ax - bx + ab - x2
d) 3(2x -1) - 4x2 + 4x -1
a) \(=6x^2y^2\left(6xy-7\right)\)
b) \(=3xy\left(x^3y+5x-6\right)\)
c) \(=\left(ax+ab\right)-\left(bx+x^2\right)=a\left(b+x\right)-x\left(b+x\right)=\left(a-x\right)\left(b+x\right)\)
d) \(=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=\left(2x-1\right)\left(4-2x\right)=2\left(2x-1\right)\left(2-x\right)\)
\(a,=6x^2y^2\left(6xy-7\right)\\ b,=3xy\left(x^3y+5x-6\right)\\ c,=x\left(a-x\right)-b\left(a-x\right)=\left(x-b\right)\left(a-x\right)\\ d,=3\left(2x-1\right)-\left(2x-1\right)^2=\left(2x-1\right)\left(3-2x+1\right)=2\left(2-x\right)\left(2x-1\right)\)
phân tích đa thức thành nhân tử
a) x6+y6
b) x6-y6
a) x⁶ + y⁶ = (x²)³ + (y²)³
= (x² + y²)(x⁴ - x²y² + y⁴)
b) x⁶ - y⁶
= (x³)² - (y³)²
= (x³ - y³)(x³ + y³)
= (x - y)(x² + xy + y²)(x + y)(x² - xy + y²)