Cho m= 120.a+36.b .Chứng tỏ m chia hết cho 12
a, Cho tổng A = 125 mũ 100 + 350 + x
Tìm điều kiện của x để A chia hết cho 5 ; để A không chia hết cho 5 ; để A chia hết cho 2 ; để A không chia hết cho 2
b, phép chia n:12 có số dư là 9. Hỏi n chia hết cho 3 không ? n chia hết cho 4 không ?
c, phép chia m:36 có số dư là 18. Hỏi m:(chia hết) cho 4 không; m chia hết cho 9 không
d,Chứng tỏ rằng với mọi n thuộc N thì 54n + 36 :(chia hết) 18, nhưng không chia hết cho 30
6.cho A=120+36.Chứng minh rằng a chia hết cho 12
Ta có:
\(A=120+36\)
\(A=12\cdot10+12\cdot3\)
\(A=12\cdot\left(10+3\right)\)
\(A=12\cdot13\)
Vậy \(A\) chia hết cho 12
1
a,cho tổng A =20+125+350+x
Tìm điều kiện của x để: A chia hết cho 5; A không chia hết cho 5; A chia hết cho 2; A không chia hết cho 2
b,Phép chia n:12 có số dư 8.Hỏi n chia hết cho 4 không ; n chia hết cho 6 không
c,Phép chia m:36 có số dư 28.Hỏi m chia hết cho 2 không ; m chia hết cho 4 không
d,Chứng tỏ rằng với mọi n thuộc N thì 60n + 45 : (chia hết) 15 , nhưng không chia hết cho 30
cho tổng M= 35a + 70b +14 ( với a,b N)
a) chứng tỏ M chia hết cho 7
b) chứng tỏ M không chia hết cho 5
\(a,M=35a+70b+14=7\left(5a+10b+2\right)⋮7\left(đpcm\right)\\ b,M=5\left(7a+14b+2\right)+4\\ Mà:4⋮̸5\Rightarrow5\left(7a+14b+2\right)+4⋮̸5\\ \Rightarrow M⋮̸5\left(đpcm\right)\)
cho M = 3+3^2+...+3^100.chứng tỏ M chia hết cho 120
M=3+3^2+3^3+...+3^100 chia hết cho 120=>M chia hết cho 10 x12=>M chia hết cho 10 và 12 =>M=(3+3^3)+(3^2+3^4)+...+(3^98+3^100) =>M=3(1+3^2)+3^2(1+3^2)+...+3^98(1+3^2) =>M=10(3+3^2+...+3^98)chia hết cho 10 =>M=(3+3^2)+...+(3^99+3^100) =>M=(3+3^2)+...+3^98(3+3^2) =>M=12+...+3^98.12 =>M=12.(1+...+3^98)chia hết cho 12 =>Vậy M chia hết cho 120 Nhớ K mình nhé!
Bài 1: chi A= m2 + m+1 với m thuộc N. Chứng tỏ rằng:
a) A không chia hết cho 2
b) A không chia hết cho 5
Bài 2: Cho P= 2+22+23+...+210
Chứng tỏ rằng:
a) P chia hết cho 3
b) P chia hết cho 31
Bài 3: cho Q=3+32+33+...+312
Chứng tỏ rằng:
a) Q chia hết cho 4
b) Q chia hết cho 10
c) Q chia hết cho 13
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Bài 3:
a,b) \(Q=3+3^2+3^3+...+3^{12}\)
\(Q=(3+3^2+3^3+3^4)+....+(3^9+3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+3^9(1+3+3^2+3^3)\)
\(=(1+3+3^2+3^3)(3+3^5+3^9)=40(3+3^5+3^9)\vdots 40\)
Do đó \(Q\vdots 10; Q\vdots 4\)
c) \(Q=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{10}+3^{11}+3^{12})\)
\(=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{10}(1+3+3^2)\)
\(=13(3+3^4+...+3^{10})\vdots 13\)
Ta có đpcm.
b)
A = 3 + 3^2+ 3^3 + 3^3 + ... + 3^132
a, chứng tỏ A chia hết cho 40
b, chứng tỏ A chia hết cho 39
c, chứng tỏ A chia hết cho 120
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
Cho M là số tự nhiên chứng tỏ rằng:
A=30*m+12 chia hết cho 6 nhưng không chia hết cho 5
vì 30m chia hết cho 6 và 12 chia hết cho 6=> M chia hết cho 6
vì 30m chia hết cho 5 mà 12 ko chia hết cho 5=> M ko chia hết cho 5
vậy M chia hết cho 6 nhưng M ko chia hết cho 5
\(A=30m+12=6\left(5m+2\right)⋮6\forall m\in N\)
Vì \(30m⋮5\); 12 không chia hết cho 5
Nên A = 30m +12 không chia hết cho 5
bài 1/ cho M = 12+122+123+......+1229+1230
chứng minh M chia hết cho 13
bài 2/ cho (5a+17b) chia hết cho 21
chứng minh :(5b-a) chia hết cho 21
bài 3/ chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3