Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 22:33

loading...

Hà thúy anh
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 9:05

                       : a) A= (2x - 1)(x - 3)

A=\(2x^2-6x-x+3=\left(2x^2-\frac{2.\sqrt{2}.7}{2\sqrt{2}}x+\frac{49}{8}\right)-\frac{49}{8}+3\)

=\(\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2-\frac{25}{8}\)>=\(-\frac{25}{8}\)

dấu = xảy ra khi \(x=\frac{7}{4}\)

=> Min A=\(-\frac{25}{8}\)khi x=\(\frac{7}{4}\)

                        b) B= (1 - 2x)(x - 3)

=\(-2x^2+6x+x-3\)

=\(-\left(2x^2-7x+\frac{49}{8}\right)-3-\frac{49}{8}\)

=\(-\frac{73}{8}-\left(\sqrt{2}x-\frac{7}{2\sqrt{2}}\right)^2\)<= \(-\frac{73}{8}\)

dấu = xảy ra khi x=\(\frac{7}{4}\)

=> MaxB=-73/8 khi x=7/4

phamthiminhanh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 12:58

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

Akai Haruma
4 tháng 7 2021 lúc 12:59

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

Akai Haruma
4 tháng 7 2021 lúc 13:03

Vì $2-x\geq 0$ (theo ĐKXĐ) nên $C=1+\sqrt{2-x}\geq 1$

Vậy $C_{\min}=1$. Giá trị này đạt tại $2-x=0\Leftrightarrow x=2$

Vân Khánh
Xem chi tiết
Vân Khánh
3 tháng 9 2021 lúc 13:27

Mk cần đáp án gấp ạ.(khoảng 20-30p)gianroi

Jenny phạm
Xem chi tiết
bumby nhi
Xem chi tiết
nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:53

a.

\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)

\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)

\(\Rightarrow y_{min}=y\left(1\right)=0\)

\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)

b.

\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]

\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)

\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)

Nguyễn Việt Lâm
6 tháng 6 2021 lúc 20:58

c.

\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)

Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=-t^2-t+2\)

\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)

\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)

d.

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)

\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)

\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)

Loan
Xem chi tiết
Phương Dư Khả
Xem chi tiết