Gia trị lớn nhất của biểu thức P= 1+$\frac{9}{\sqrt{x^2+1}}$ là...
Cho biểu thức A = \(\frac{\sqrt{x}}{\sqrt{x}+3}\)+\(\frac{2\sqrt{x}}{\sqrt{x-3}}\)-\(\frac{3x+9}{x-9}\)
1) rút gọn biểu thức A
2) Tìm giá trị của biểu thức A
3) tìm giá trị lớn nhất của biểu thức A
Kiếm việc làm nào :)
1) ĐK \(x\ne\pm9\)
\(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\frac{3x+9}{x-9}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}\)
2) ?
3) Ta có
\(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)
\(\Rightarrow A=\frac{3}{\sqrt{x}+3}\le1\)
Dấu "=" xảy ra khi x = 0
Tìm giá trị lớn nhất của biểu thức P= \(\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}\)
\(P=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
\(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}\cdot9\sqrt{x}}=6\)
\(\Rightarrow P\le1-6=-5\)
Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow x=\frac{1}{9}\)
Vậy MaxP =-5 đạt được khi \(x=\frac{1}{9}\)
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
BÀI 1:
a) Cho biểu thức A = \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\) Tính giá trị khi của A khi x = 81
b) Rút gọn biểu thức B =\(\frac{x-7}{x-\sqrt{4x}+3}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}-3}\) với ĐKXĐ x ≥ 0,x ≠ 1,x ≠ 9
c) Tìm giá trị lớn nhất của biểu thức P = A . B
a/ Bạn tự giải
b/ \(B=\frac{x-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{x-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
c/ \(P=AB=\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}-1}\right)=\frac{\sqrt{x}+3}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Do \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)
\(\Rightarrow P\le1+\frac{1}{2}=\frac{3}{2}\Rightarrow P_{max}=\frac{3}{2}\) khi \(x=0\)
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
b)\(S=A\cdot B\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)
\(=1+\frac{1}{\sqrt{x}+2}\)
Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\) đạt GTLN
\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN
GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)
Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)
ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)
\(\Leftrightarrow x\ge0\) và \(x\ne1\)
SAO KHÔNG XEM ĐƯỢC VẬY TOÀN LEFT RIGHT FRAC CÁI GÌ CHẢ HIỂU NỔI
cho 2 biểu thức
A=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)
B=\(\frac{\sqrt{x}+3}{\sqrt{x}+1}\)
a)Rút gọn biểu thức A
b)Tìm giá trị của x để biểu thức S=A.B có giá trị lớn nhất
a/ \(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) \(\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
TÌM GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC P=\(\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}\)
P=\(\frac{\sqrt{x}-1-9x}{\sqrt{x}}=\frac{-5\sqrt{x}-\left(9x-6\sqrt{x}+1\right)}{\sqrt{x}}=-5-\frac{\left(3\sqrt{x}-1\right)^2}{\sqrt{x}}\le-5\)
Dấu "=" xảy ra\(\Leftrightarrow3\sqrt{x}-1=0\Leftrightarrow x=\frac{1}{9}\)
Vậy: Pmax = -5 \(\Leftrightarrow x=\frac{1}{9}\)
Cho biểu thức : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)với \(x\ge0;x\ne9\). Tìm giá trị lớn nhất của biểu thức A.
Cho x,y là hai số dương thay đổi và có tích của chúng bằng 1. Tìm giá trị lớn nhất của biểu thức \(Q=\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+\sqrt{y}+1}+\frac{1}{\sqrt{y}+1}\)
Đề thì vừa đúng vừa sai. Đề đúng vì max cần tìm là có thật. Nhưng đề sai vì kết quả quá xấu (thậm chí đến WolframAlpha còn giải ko trọn vẹn mà chỉ ra xấp xỉ).
Ý tưởng thế này: Đặt \(X=\sqrt{x}\) thì \(\sqrt{y}=\frac{1}{X}\) nên viết lại biểu thức thành:
\(Q=\frac{1}{X+2}+\frac{1}{X+\frac{1}{X}+1}+\frac{1}{\frac{1}{X}+1}=\frac{X^4+5X^3+8X^2+6X+1}{\left(X+1\right)\left(X+2\right)\left(X^2+X+1\right)}\)
Tới đây có giải cũng ko được đâu, vì...
Theo WolframAlpha thì quả thật biểu thức có max nhưng giá trị đó là:
\(Q\approx1,20411\) tại \(X\approx1,75108\).
Khi mình tra sâu hơn về cái giá trị \(X\) trên kia thì nhận ra giá trị đó là nghiệm của pt
\(x^6+4x^5+5x^4-6x^3-22x^2-20x-7=0\) (giải kiểu gì???)
Mình nghĩ đề bài đã cho điều kiện x,y là hai số dương có tích bằng 1 thì nên áp dụng bất đẳng thức AM-GM sẽ phù hợp với chương trình lớp 9
cơ mà bạn tra sâu hơn về giá trị x như thế nào để biết x là nghiệm của phương trình trên :v tò mò quá