Cho tam giác ABC (AB=AC).Các tia phân giác của góc B,góc C Cắt AB và AC tại E,F.Gọi I là giao điểm của BEB và CF
a,cm BE=CF
b,AI là phân giác của góc A
Cho tam giác ABC có AB > AC. Từ trung điểm M của Bc vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lần lượt tại E và F. Chứng minh rằng:
a) BE = CF
b) AB + AC AB - AC
AE = ______, BE = ______
2 2
c) ACB - B
Góc BME= ______
2
Mọi người giúp mình với ạ, mình đang cần gấp.
Cho tam giác ABcó BAC= 50 độ. Tia phân giác góc B cắt AC tại E, tia phân giác góc C cắt AB tại F, gọi I là giao điểm của BE và CF. Qua I vẽ đường thảng vuông góc với AI cắt AB tại M và AC tại N
a. Tính góc BIC
b. CM IM=IN=1/2MN
C CM MIB=ACB/2
cho tam giác cân ABC ( AB=AC). Các tia phân giác của góc B, C cát AC và AB tại E, F
a)Chứng minh: BE=CF
b) gọi I là giao điểm của BE và CF. Chứng minh AI là Phân giác của góc A.
Cho tam giác ABC cân tại A kẻ BE là phân giác của góc B và CF là phân giác góc C (E thuộc AC, F thuộc AC)
a)chứng minh AE = CF
b)chứng minh EF//BC
c)Gọi I là giao điểm của BE và CF chúng minh AI thuộc BC
d) tam giác BIC là tam giác gì?
a: Xét ΔAEB và ΔAFC có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
\(\widehat{BAC}\) chung
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: Xét ΔFBI và ΔECI có
\(\widehat{FBI}=\widehat{ECI}\)
FB=EC
\(\widehat{BFI}=\widehat{CEI}\)
Do đó: ΔFBI=ΔECI
Suy ra: IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI\(\perp\)BC
d: Xét ΔBIC có IB=IC
nên ΔBIC cân tại I
Cho tam giác abc cân tại A. Cắt tia phân giác của góc B,góc C. Cắt AB,AC tại E,F.Chứng minh BE=CF. Biết T là giao điểm của BF và CE. Chứng minh AT là tia phân giác góc A
Bài 1:Cho tam giác ABC có góc A = 60 độ, phân giác của góc B cắt AC tại D. Phân giác của góc C cắt Ab tại E. Gọi I là giao điểm của BD và CE. IF là phân giác của góc BIC ( F thuộc BC). Chứng minh tam giác ADE đều
Bài 2: Tam giác ABC có góc B= 2 lần góc C, đường cao AH, trên tia đối của tia BA lấy điểm E. BE=BH. Chứng minh EH đi qua AC.
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng
a/ Ta có AB=AC(gt)
Mà D và E là trung điểm của AB và AC
=> AD=BD=AE=EC
Xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
Góc A chung
AE=AD(cmt)
=> tam giác ABE= tam giác ACD(c-g-c)
b/ Ta có tam giác ABE= tam giác ACD(c-g-c)
=> góc ABE=góc ACD
=> góc KBC=góc KCB vì tam giác ABC cân tại A
Vậy tam giác KBC cân tại K
cho tam giác ABC cân tại A (AB=AC). Gọi D, E lần lượt là trung điểm của AB và AC
a, Chứng minh: tam giác ABE= tam giác ACD
b, CM: BE=CD
c, Gọi K là giao điểm của BE và CD. CM: tam giác KBC cân tại K
d, CM: AK là tia phân giác của góc BAC
f, Kẻ tia BX vuông góc BA tại B, tia CY vuông góc CA tại C, hai tia BX và CY cắt nhau tại I. CM: A,K,I thẳng hàng