sin 2x + 2cos\(^2\)2x +3sinx + cosx -3=0
giải pt :
sin 2x + 2cos \(^2\)x +3sinx + cosx -3=0
Mn giúp em với ạ TT
giải phương trình đối với sin x và cosx
1) 3sinx-4cosx=5
2) \(\sqrt{3}cos2x+sin2x+2sin\left(2x-\frac{\pi}{6}\right)=2\sqrt{2}\)
3) \(cosx+\sqrt{3}sinx+2cos\left(2x+\frac{\pi}{3}\right)=0\)
4) \(2cos\left(2x+\frac{\pi}{6}\right)+4sinxcosx-1=0\)
5) \(\sqrt{3}cos5x-2sin3x.cos2x-sinx=0\)
1.Đơn giản biểu thức sau:
a) (1-cosx)(1+cosx) - sin^2x
b) tan^2x(2cos^2x+sin^2x -1)+cos^2x
2.So sánh
3-√5 và 0
1.
a) \(\left(1-cos_x\right)\left(1+cos_x\right)-sin^2_x=1-cos^2_x-sin^2_x=1-\left(cos^2_x+sin^2_x\right)=1-1=0\)
b) \(tan^2_x\left(2.cos^2_x+sin^2_x-1\right)+cos^2_x=tan^2_x\left(cos^2_x+sin^2_x+cos^2_x-1\right)+cos^2_x=tan^2_x\left(1-1+cos^2_x\right)+cos^2_x=tan^2_x.cos^2_x+cos^2_x=\left(tan_x.cos_x\right)^2+cos^2_x=sin^2_x+cos^2_x=1\)2. Ta có \(9>5\Leftrightarrow\sqrt{9}>\sqrt{5}\Leftrightarrow3>\sqrt{5}\Leftrightarrow3-\sqrt{5}>0\)
Vậy \(3-\sqrt{5}>0\)
mọi người giải chi tiết dùm e 3 bài này với
a) \(2cosx-3sinx+2=0\)
b) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)
c) \(cos\left(2x-15^0\right)+sin\left(2x-15^0\right)=-1\)
a ) \(2cosx-3sinx+2=0\)
\(\Leftrightarrow2cosx-3sinx=-2\)
\(\Leftrightarrow\dfrac{2}{\sqrt{13}}cosx-\dfrac{3}{\sqrt{13}}sinx=-\dfrac{2}{\sqrt{13}}\)
Thấy : \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{-3}{\sqrt{13}}\right)^2=1\) nên tồn tại \(\alpha\) t/m :
\(sin\alpha=\dfrac{2}{\sqrt{13}};cos\alpha=\dfrac{-3}{\sqrt{13}}\) . . Khi đó : \(sin\alpha.cosx+cos\alpha.sinx=\dfrac{-2}{\sqrt{13}}\)
\(\Leftrightarrow sin\left(\alpha+x\right)=\dfrac{-2}{\sqrt{13}}\) ( p/t cơ bản )
b ) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\) ( ĐK : \(cosx\ne-1\Leftrightarrow x\ne\left(2k+1\right)\pi\) ; ( k thuộc Z ) )
\(\Leftrightarrow2+2sinx=cosx+1\) \(\Leftrightarrow cosx-2sinx=1\)
Làm giống như a )
c ) \(cos\left(2x-15^o\right)+sin\left(2x-15^o\right)=-1\)
Đặt \(t=2x-15^o\) ; ta có : \(cos t + sin t = -1\)
\(\Leftrightarrow\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)=-1\) \(\Leftrightarrow sin\left(t+\dfrac{\pi}{4}\right)=sin\left(-\dfrac{\pi}{4}\right)\)
Xong rồi bn làm tiếp ; chú ý đổi ra độ
giải các pt
a) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
b) \(6sinx-2cos^3x=\frac{5sin4x.sinx}{2cos2x}\)
c) \(cos^3x=2sinx.sin\left(\frac{\pi}{3}-x\right).sin\left(x+\frac{\pi}{3}\right)\)
d) \(cos2x\left(sinx+cosx\right)-4cos^3x\left(1+sin2x\right)=0\)
a.
ĐKXĐ: \(cosx\ne0\)
Chia 2 vế cho \(cos^2x\) ta được:
\(\left(1+tanx\right).tan^2x=3tanx\left(1-tanx\right)+\frac{3}{cos^2x}\)
\(\Leftrightarrow tan^2x\left(tanx+1\right)=3tanx-3tan^2x+3+3tan^2x\)
\(\Leftrightarrow tan^2x\left(tanx+1\right)-3\left(tanx+1\right)=0\)
\(\Leftrightarrow\left(tan^2x-3\right)\left(tanx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow cos^3x=sinx\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(\Leftrightarrow cos^3x=sinx\left(cos2x-\frac{1}{2}\right)\)
\(\Leftrightarrow cos^3x=2sinx\left(1-2sin^2x-\frac{1}{2}\right)\)
\(\Leftrightarrow cos^3x=sinx\left(\frac{1}{2}-2sin^2x\right)\)
\(\Leftrightarrow2cos^3x=sinx-4sin^3x\)
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow2=tanx\left(1+tan^2x\right)-4tan^3x\)
\(\Leftrightarrow3tan^3x-tanx+2=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(3tan^2x-3tanx+2\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow\left(cos^2x-sin^2x\right)\left(sinx+cosx\right)-4cos^3x\left(sin^2x+cos^2x+2sinx.cosx\right)=0\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(sinx+cosx\right)^2-4cos^3x\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left(cosx-sinx-4cos^3x\right)\left(sinx+cosx\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx-4cos^3x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=0\Leftrightarrow x+\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Xét \(\left(2\right)\), nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow\frac{1}{cos^2x}-tanx.\frac{1}{cos^2x}-4=0\)
\(\Leftrightarrow1+tan^2x-tanx\left(1+tan^2x\right)-4=0\)
\(\Leftrightarrow-tan^3x+tan^2x-tanx-3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-2tanx+3\right)=0\)
\(\Leftrightarrow tanx=-1\Rightarrow x=-\frac{\pi}{4}+k\pi\)
Đơn giản biểu thức: a) (1-cosx)(1+cosx) - sin^2x
b) tg^2x (2cos^2x + sin^2x - 1) + cos^2x
a) (1 -cosx)(1+cosx)
=\(\left(1-cos^2x\right)-sin^2x\)
=\(sin^2x-sin^2x\)
=0
b) tan\(^2x\)(2cos\(^2x\)+sin\(^2x\)-1) +cos\(^2x\)
\(=tan^2x\left(cos^2x+cos^2x+sin^2x-1\right)\)+\(cos^2x\)
=\(tan^2x\left(cos^2x+1-1\right)+cós^2x\)
\(=tan^2x.cos^2x+cos^2x \)
=\(\dfrac{sin^2x}{cos^2x}.cos^2x+cos^2x\)
=\(sin^2x+cos^2x\)
=1
giải phương trình lượng giác
\(2cos^2x-1=sin3x\)
\(2sin^4x-5sin^3x-sin^2x+3sinx+1=0\)
\(sin^6x+cos^6x=2cos^2\left(\frac{\pi}{4}-x\right)\)
a/
\(\Leftrightarrow cos2x=sin3x\)
\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-3x+k2\pi\\2x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)\left(sin^2x-2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\\sinx=1-\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)
c/
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1+cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow1-3sin^2x.cos^2x=1+sin2x\)
\(\Leftrightarrow-\frac{3}{4}sin^22x=sin2x\)
\(\Leftrightarrow3sin^22x+4sin2x=0\)
\(\Leftrightarrow sin2x\left(3sin2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{k\pi}{2}\)
giải các pt
a) \(1-2cos2x-\sqrt{3}sinx+cosx=0\)
b) \(cos2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)
c) \(sin^2x+3sinx.cosx-4cos^2x=4\left(sinx-cosx\right)\)
d) \(\frac{cos^3x-sin^3x}{2cosx+3sinx}=cos2x\)
a/
\(\Leftrightarrow1-2\left(2cos^2x-1\right)-\sqrt{3}sinx+cosx=0\)
\(\Leftrightarrow3-4cos^2x+cosx-\sqrt{3}sinx=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(4cosx+3\right)-\sqrt{3}sinx=0\)
\(\Leftrightarrow2sin^2\frac{x}{2}\left(4cosx+3\right)-2\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}sin\frac{x}{2}=0\Rightarrow x=k2\pi\\sin\frac{x}{2}\left(4cosx+3\right)-\sqrt{3}cos\frac{x}{2}=0\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\frac{x}{2}\left(8cos^2\frac{x}{2}-1\right)-\sqrt{3}cos\frac{x}{2}=0\)
- Với \(\left\{{}\begin{matrix}cos\frac{x}{2}=0\\sin\frac{x}{2}=-1\end{matrix}\right.\) \(\Rightarrow x=-\pi+k4\pi\) là 1 nghiệm
- Với \(cos\frac{x}{2}\ne0\) chia 2 vế cho \(cos^3\frac{x}{2}\)
\(tan\frac{x}{2}\left(8-1-tan^2\frac{x}{2}\right)-\sqrt{3}-\sqrt{3}tan^2\frac{x}{2}=0\)
\(\Leftrightarrow-tan^3\frac{x}{2}-\sqrt{3}tan^2\frac{x}{2}+7tan\frac{x}{2}-\sqrt{3}=0\)
Đặt \(tan\frac{x}{2}=t\)
\(\Rightarrow t^3+\sqrt{3}t^2-7t+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\sqrt{3}\\t=-2-\sqrt{3}\\t=2-\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x}{2}=\frac{\pi}{3}+k\pi\\\frac{x}{2}=-\frac{5\pi}{12}+k\pi\\\frac{x}{2}=\frac{\pi}{12}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\\x=\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow cos^2x-sin^2x+cos^2x-sinx.cosx=8\left(cosx-sinx\right)\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx\right)+cosx\left(cosx-sinx\right)=8\left(cosx-sinx\right)\)
\(\Leftrightarrow\left(cosx-sinx\right)\left(2cosx+sinx-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\left(1\right)\\2cosx+sinx=8\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x-\frac{\pi}{4}=k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2), theo điều kiện có nghiệm của pt lượng giác bậc nhất, \(2^2+1^2< 8^2\Rightarrow\left(2\right)\) vô nghiệm
c/
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)
Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cosx.cosa+sinx.sina=cosa\)
\(\Leftrightarrow cos\left(x-a\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)
giải các pt
a) \(3cos4x-8cos^6x+2cos^2x+3=0\)
b) \(4+3sinx+sin^3x=3cos^2x+cos^6x\)
c) \(2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=cos2x-3\)
d) \(\frac{\sqrt{3}}{cos^2x}-tanx-2\sqrt{3}=sinx\left(1+tanx.tan\frac{x}{2}\right)\)
a/
\(\Leftrightarrow3\left(cos4x+1\right)+2cos^2x\left(1-4cos^4x\right)=0\)
\(\Leftrightarrow3\left(2cos^22x-1+1\right)+2cos^2x\left(1-2cos^2x\right)\left(1+2cos^2x\right)=0\)
\(\Leftrightarrow6cos^22x+\left(1+cos2x\right).\left(-cos2x\right)\left(2+cos2x\right)=0\)
Đặt \(cos2x=a\)
\(\Rightarrow6a^2-a\left(a+1\right)\left(a+2\right)=0\)
\(\Leftrightarrow a\left(-a^2+3a-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\\cos2x=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow4+3sinx+sin^3x=3\left(1-sin^2x\right)+\left(1-sin^2x\right)^3\)
Đặt \(sinx=a\) ta được:
\(a^3+3a+4=3-3a^2+\left(1-a\right)^3\)
\(\Leftrightarrow a^3+3a^2+3a+1=\left(1-a\right)^3\)
\(\Leftrightarrow\left(a+1\right)^3=\left(1-a\right)^3\)
\(\Leftrightarrow a+1=1-a\)
\(\Leftrightarrow a=0\)
\(\Rightarrow sinx=0\Rightarrow x=k\pi\)
c/
ĐKXĐ: ...
\(\Leftrightarrow2cos^2x\left(1+tanx.tan\frac{x}{2}\right)=2cos^2x-4\)
\(\Leftrightarrow2cos^2x+2cos^2x.tanx.tan\frac{x}{2}=2cos^2x-4\)
\(\Leftrightarrow cos^2x.tanx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.tan\frac{x}{2}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=-2\)
\(\Leftrightarrow sinx.cosx.\frac{sin^2\frac{x}{2}}{2sin\frac{x}{2}.cos\frac{x}{2}}=-1\)
\(\Leftrightarrow cosx\left(\frac{1-cosx}{2}\right)=-1\)
\(\Leftrightarrow cos^2x-cosx-2=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pi+k2\pi\)