GTNN của a-$\sqrt{a}$ +1 (a$\ge $0)
1.Cmr: 2^\(\sqrt[12]{a}\)+2^\(\sqrt[4]{a}\)≥2 ∀a≥0
2.Tìm gtnn của hs:y=2^x-1 +2^3-x
1.
Đặt \(\sqrt[12]{a}=x\ge0\)
\(\Rightarrow VT=2^x+2^{x^3}\ge2\sqrt{2^{x+x^3}}\ge2\) (đpcm)
Dấu "=" xảy ra khi \(x=0\) hay \(a=0\)
2.
\(y=2^{x-1}+2^{3-x}\ge2\sqrt{2^{x-1+3-x}}=4\)
\(y_{min}=4\) khi \(x-1=3-x\Leftrightarrow x=2\)
Cho a,b\(\ge\)0, (1+a)(1+b)
Tìm GTNN của \(\sqrt{1+a^4}+\sqrt{1+b^4}\)
cái đề là \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
Cho \(A=\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\) với x \(\ge\) 0. Rút gọn A. Tìm GTNN và GTLN của A
\(A=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow A\ge0\)
\(\Rightarrow A_{min}=0\) khi \(x=0\)
Với \(x\ne0\Rightarrow A=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}-1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-1}=\frac{1}{2-1}=1\)
\(\Rightarrow A_{max}=1\) khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của: \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (tự cm)
Lại có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)
Áp dụng BĐT trên ta có : : \(xy\le\left(\dfrac{x+y}{2}\right)^2\)
\(\Leftrightarrow A\ge\dfrac{x+y}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{1}{\dfrac{1}{2^2}}=4\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Vậy...
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(A=\dfrac{1}{x}+\dfrac{1}{y}\) biết x+y=1 và x, y dương
Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)
Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:
A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)
dấu bằng xảy ra khi x=y=0,5.
c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)
⇔(a+b)2 ≥ 4ab
⇔a2 +b2 +2ab≥ 4ab
⇔(a-b)2 ≥ 0 (luôn đúng)
dấu bằng xảy ra khi a=b.
\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)
Vậy BĐT (*) được chứng minh.
\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)
__________________________________
\(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)
Vậy GTNN của A = 4
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)
Theo đề bài, ta có:
\(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Leftrightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\\ \Leftrightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1^2}{4}=\dfrac{1}{4}\\ \Leftrightarrow xy\le\dfrac{1}{4}\\ \Leftrightarrow A\le\dfrac{x+y}{xy}=\dfrac{1}{\dfrac{1}{4}}=4\)
Vậy \(A_{min}=4\Leftrightarrow x=y=\dfrac{1}{2}\)
Chứng minh với a, b lớn hơn 0 thì: \(\dfrac{a+b}{2}\ge\sqrt{ab}\). Áp dụng tìm GTNN của \(B=\dfrac{x+1}{x}\) với:
TH1: x>0
TH2: \(0< x\le\dfrac{1}{4}\)
TH3: \(x\ge2\)
*Chứng minh bất đẳng thức
Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) (đpcm)
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)
Cho A=\(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\) với x≥0, x≠1.
Rút gọn A và tìm GTNN của A
\(A=\frac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{x+16}{\sqrt{x}+3}\)
+ \(A=\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}\) \(=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\frac{25}{\sqrt{x}+3}}-6=10-6=4\)
Dấu "=" \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow x=4\)
Vậy \(A=\frac{x+16}{\sqrt{x}+3}\)
Min A = 4 \(\Leftrightarrow x=4\)
Cho A \(\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\) ( a>0, a≠1)
a) Rút gọn
b) Tính A khi a= 6+\(4\sqrt{2}\)
c) Tìm a biết A=0
d) Tìm a biết A≥0
e) Tìm GTNN của A
Tìm GTNN của \(\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Cho a,b,c>0 chứng minh \(\frac{a}{b}+\sqrt{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}\ge\frac{5}{2}\)