Phân tích đa thức thành nhân tử : \(\left(x+2\right)^2-\left(x-2\right)^2\)
phân tích đa thức thành nhân tử
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)-2\left(x^2+x-5\right)-3\left(x^2+x-5\right)+3\)
\(=2\left(x^2+x-5\right)\left(x^2+x-6\right)-3\left(x^2+x-6\right)\)
\(=\left(x^2+x-6\right)\left(2x^2+2x-13\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
\(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
Đặt t=\(x^2+x\)
\(\Rightarrow C=2\left(t-5\right)^2-5t+28=2t^2-20t+50-5t+28=2t^2-25t+78=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)\)
Thay t: \(C=2\left(t-\dfrac{13}{2}\right)\left(t-6\right)=2\left(x^2+x-\dfrac{13}{2}\right)\left(x^2+x-6\right)=2\left(x-2\right)\left(x+3\right)\left(x^2+x-\dfrac{13}{2}\right)\)
Ta có: \(C=2\left(x^2+x-5\right)^2-5\left(x^2+x\right)+28\)
\(=2\left(x^2+x-5\right)^2-5\left(x^2+x-5\right)+3\)
\(=\left(x-2\right)\left(x+3\right)\left(2x^2+2x-13\right)\)
Phân tích đa thức thành nhân tử: \(\left(x+5\right)^2+4\left(x+5\right)\left(x-5\right)+4\left(x^2-10x+25\right)=0\)
\((x+5)^2+4(x+5)(x-5)+4(x^2-10x+25)=0\\\Rightarrow(x+5)^2+4(x+5)(x-5)+4(x^2-2\cdot x\cdot5+5^2)=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+4(x-5)^2=0\\\Rightarrow(x+5)^2+2\cdot(x+5)\cdot2(x-5)+[2(x-5)]^2=0\\\Rightarrow[(x+5)+2(x-5)]^2=0\\\Rightarrow(x+5+2x-10)^2=0\\\Rightarrow(3x-5)^2=0\\\Rightarrow3x-5=0\\\Rightarrow3x=5\\\Rightarrow x=\frac53\\\text{#}Toru\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ:
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\)
=(x^2+8x)^2+23(x^2+8x)+135
Cái này ko phân tích được nha bạn
\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)
Gọi `A=(x^2+8x+8)(x^2+8x+15)+15`
Đặt `t=x^2+8x+11,5`
`=>A=(t-3,5)(t+3,5)+15=t^2-3,5^2+15=t^2-2,75=(t-sqrt(2,75))(t+sqrt(2,75))=(x^2+8x+11,5-(sqrt11)/2)(x^2+8x+11,5+(sqrt11)/2)=(x^2+8x+(23-\sqrt11)/2)(x^2+8x+(23+\sqrt11)/2)`
Phân tích đa thức thành nhân tử
\(x^2+27+\left(x+3\right)\left(x-9\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
x3+27+(x+3)(x+9)
= (x+3)(x2-3x+9)+(x+3)(x+9)
= (x+3)(x2-3x+9+x+9)
=(x+3)(x2-2x+18)
Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
`(x+3)^4+(x+5)^4-2`
`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`
`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`
`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`
`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`
`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`
`=(x+4)(2x^3+24x^2+108x+176)`
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)
\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)
\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)
\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)
\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)
\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)
\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)
\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)
phân tích đa thức thành nhân tử \(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(x^2\cdot\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
Phân tích đa thức thành nhân tử : \(\left(x+2\right)^2-\left(x-2\right)^2\)
\(\left(x+2\right)^2-\left(x-2\right)^2\)
\(=\left(x+2-x+2\right)\left(x+2+x-2\right)\)
\(=4.2x\)
\(=8x\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\cdot\left[\left(x+2\right)+\left(x-2\right)\right]\)
(x + 2)2 - (x - 2)2
= (x + 2 - x + 2).(x + 2 + x - 2)
= 4.2x
= 8x
Phân tích đa thức thành nhân tử:\(x\left(y^2-x^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)
Phân tích đa thức thành nhân tử:\(x\left(y^2-x^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)\)