Tìm GTNN của A=5.(x+1)+|y-3|-1
a Cho x + y = 5 tìm GTNN của
A = |x+1| + |y-2|
b Cho x - y = 2 Tìm GTNN của
B = |2x+1| + |2y+1|
c Cho 2x+y = 3 Tìm GTNN của
C = |2x+3| + |y+2| +2
GIÚP MÌNH NHA MAI NỘP RỒI!!!!!!!!!!
a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)
\(\ge\left|x+1+y-2\right|\)
\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0
Vậy Min A = 4 <=> (x + 1)(y - 2) \(\ge\)0
tìm GTNN của A=5.(x+1)+|y-3|-1
\(A=5\left(x+1\right)^2+\left|y-3\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi x=-1 và y=3
Cho x , y ∈ ℤ
a) Với giá trị nào của x thì biểu thức A = 1000 − x + 5 có GTLN; Tìm GTLN đó.
b) Với giá trị nào của y thì biểu thức B = y − 3 + 50 có GTNN. Tìm GTNN đó.
c) Với giá trị nào của x, y thì biểu thức C = x − 100 + y + 200 − 1
có GTNN. Tìm GTNN đó
Tìm GTNN của : A=5.(x+1)2+(y-3)-1
Sửa đề: \(A=5\left(x+1\right)^2+\left|y-3\right|-1\)
\(A=5\left(x+1\right)^2+\left|y-3\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi x=-1 và y=3
Cho x,y thuộc Z :
a/ Với giá trị nào của x thì biểu thức của A=2006-|x+5|có GTLN?Tìm GTLN đó?
b/Với giá trị nào của y thì biểu thức của B=|y-3|-9 có GTNN ?Tìm GTNN đó?
c/Tìm GTNN của biểu thức C=|x-100|+|y+200|-1?
GTNN là gì z.tui ko hiểu nên ko giải được!
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
1. Cho a>=2. Tìm GTNN của P= a + 1/a.
2. Cho x và y >0 thỏa mãn x+y+xy=1
Tìm GTNN của P=1/x+y +1/x +1/y
3.Cho x và y thuộc tâp hợp số R thỏa mãn x + y =1
Tìm GTNN của P= x3 + y3 +xy.
Làm ơn giải giùm mình nhé!
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)