Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bella nguyen
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 9:14

bai2 :cmr

a, a^3+b^3=(a+b)^3-3ab.(a+b)

VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)

=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)

=VT

b.a^3-b^3=(a-b)^3+3ab,(a-b)

\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)

=VT

=> ĐPCM

 

Hoàng Vân Anh
13 tháng 8 2016 lúc 12:44

bài 1.

a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)

= 8x3+4x2y+2xy2-4x2y-2xy2-y- 8x3+4x2y-2xy2-4x2y+2xy2-y3

=-8x2y-6y3

b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3

=8y

Nguyễn Lê Hà My
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 20:58

a: =(x^2y-x^3)-(9y-9x)

=x^2(y-x)-9(y-x)

=(y-x)(x^2-9)

=(y-x)(x-3)(x+3)

b: \(=\left(x^2-2xy+y^2\right)-4\)

=(x-y)^2-4

=(x-y-2)(x-y+2)

c: \(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

=(x+2+y)(x+2-y)

d: =(x^2-y^2)-(2x+2y)

=(x-y)(x+y)-2(x+y)

=(x+y)(x-y-2)

Toru
29 tháng 8 2023 lúc 21:00

\(a,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(y-x\right)\left(x^2-9\right)\)

\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)

\(b,x^2-2xy+y^2-4\)

\(=\left(x^2-2xy+y^2\right)-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

\(=\left(x-y+2\right)\left(x+y+2\right)\)

\(d,x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

#Urushi

Trần Thị Hòa Bình
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết
tth_new
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Trần Thanh Phương
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Trần Diệu Thi
Xem chi tiết
tam mai
16 tháng 7 2019 lúc 12:23

??? đề bài

shoppe pi pi pi pi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2019 lúc 15:42

\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)

\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)

\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)

\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Câu c đề sai, sao vừa có 2xy lại có cả 4xy

Sao hỏa Cnn mèo
Xem chi tiết
Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 15:55

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 15:58

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

Nguyễn Thị Thương Hoài
25 tháng 10 2023 lúc 16:01

Bài 2:

a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)

= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2

= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2

= 6\(x^3\) - 5\(x^2\)y + 2y2

Kim Tae-hyung
Xem chi tiết
Thái Đào
Xem chi tiết
Thái Đào
Xem chi tiết