\(\Delta ABC\) có B(-1, 4) D là chân đường cao hạ từ A, E là chân đường cao hạ từ B, N là trung điểm AB, I(\(\frac{-3}{2}\);\(\frac{7}{2}\)) là tâm đường tròn ngoại tiếp \(\Delta DEN\). Tìm C
Ai giúp mình bài này với
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông
Trong mặt phẳng với hệ tọa độ Oxy Cho tam giác ABC nội tiếp trong đường tròn tâm I; có đỉnh A thuộc đường thẳng d: x + y - 2 = 0, D(2; -1) là chân đường cao của tam giác ABC hạ từ đỉnh A. Gọi điểm E(3; 1) là chân đường vuông góc hạ từ B xuống AI; điểm P(2;1) thuộc đường thẳng AC. Tìm tọa độ các đỉnh của tam giác ABC.
MAT DAY LOP 6,7,8,9 MA DUA LOP 1 , MAT DAY DI MA
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
cho tam giác ABC nội tiếp đường tròn tâm I, có đỉnh A thuộc đường thẳng d:x+y-2=0, điểm D(-2;1) là chân đường cao của tam giác ABC hạ từ A. Gọi E(3;1) là chân đường vuông góc hạ từ B xuống AI, điểm P(2;1) thuộc cạnh AC. Tìm tọa độ các đỉnh của tam giác ABC
Ta dễ có tứ giác ABDE nội tiếp đường tròn đường kính AB => ^CDE = ^BAE
Lại có ^BAE = ^CAD (= 900 - ^ACB), suy ra ^CDE = ^CAD = 900 - ^ACD => DE vuông góc AC
Thấy D,E,P cùng có tung độ bằng 1 => D,E,P thẳng hàng, vì P thuộc AC nên DE vuông góc với AC tại P
Đường thẳng AC: đi qua P(2;1), VTPT \(\overrightarrow{DE}=\left(5;0\right)\) \(\Rightarrow AC:x-2=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow A\left(2;0\right)\)
Đường thẳng BC: đi qua \(D\left(-2;1\right)\),VTPT \(\overrightarrow{DA}=\left(4;-1\right)\Rightarrow BC:4x-y+9=0\)
Xét hệ: \(\hept{\begin{cases}x-2=0\\4x-y+9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=17\end{cases}\Rightarrow C\left(2;17\right)}\)
Đường thẳng BE: đi qua \(E\left(3;1\right)\), VTPT \(\overrightarrow{AE}=\left(1;1\right)\Rightarrow BE:x+y-4=0\)
Xét hệ: \(\hept{\begin{cases}4x-y+9=0\\x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\Rightarrow B\left(-1;5\right)\)
Vậy \(A\left(2;0\right),B\left(-1;5\right),C\left(2;17\right)\).
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC,CA,AB. G,H,I lần lượt là chân đường cao hạ từ đỉnh A,B,C. Trực tâm tam giác ABC là S. J,K,L theo thứ tự là trung điểm SA,SB,SC. Chứng minh rằng: 9 Điểm D,E,F,G,H,I,L,K,J cùng thuộc đường tròn. (Gợi ý: đường tròn đường kính JD)
Cho tam giác ABC. Gọi D,E,F lần lượt là trung điểm của BC, CA,AB. Gọi M,N, P lần lượt là chân đường cao hạ từ A, B, C. Các điểm G, I, K là trung điểm của ba đoạn nối từ trực tâm của tam giác đến ba đỉnh A, B, C. chứng minh chín điểm D,E,F, M, N, P, G, I, K thuộc một đường tròn(đường tròn Ơ le hay đường tròn 9 điểm)
Cho \(\Delta ABC\)nhọn. Ba đường cao AD, BI, CK cắt nhau tại H. gọi chân các đường vuông góc hạ từ D xuống AB, AC lần lượt là E và F
a) CMR : AE.AB = AF.AC
b) giả sử \(HD=\frac{1}{3}AD\) . CMR : tanB.tanC =3
c) gọi M,N lần lượt là chân các đường vuông góc kẻ từ D đến BI, CK. CMR : E, N, M, F thẳng hàng
Cho tam giác ABC có điểm M(0;3) thuộc đường cao kẻ từ đỉnh A. Gọi D,E,F lần lượt là chân đường cao hạ từ đỉnh A,B,C. Biết rằng D(2;-1) E(2;2) và F thuộc đường thẳng: 5x - y + 12 = 0. Tìm toạ độ A, B, C.
Cho tam giác ABC vuông tại A, có AB<AC , H LG chân đường vuông góc hạ từ A lên BC . Gọi E,F lần lượt là chân đường cao hạ từ H lên AB,AC CMR
a) AE=HF
b)AH=EF
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>AE=HF
b: AEHF là hình chữ nhật
=>AH=EF