Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiếu Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 7:30

loading...  

Quang Hưng Nguyễn
Xem chi tiết
Bùi Phạm Ngọc Anh 0201
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 17:39

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

Hoàng Lê Bảo Ngọc
17 tháng 7 2016 lúc 17:59

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

MixiGaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 21:16

Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔAHB đồng dạng với ΔCHA

=>\(\dfrac{HB}{HA}=\dfrac{AB}{CA}=\dfrac{1}{2}\)

=>AH=2HB

mà AH=2HE

nên HE=HB

Xét ΔHEB vuông tại H có HE=HB

nên ΔHEB vuông cân tại H

MixiGaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 21:17

loading...

Hoàng Quỳnh Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 10:39

a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

=>AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

=>ABFC là hình thoi

Ngọc Huyềnn
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 7 2021 lúc 17:09

Do AH là đường cao trong tam giác ABC cân tại A nên AH cùng là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

Áp dụng định lý py-ta-go vào tam giác vuông AHC có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{2}\left(cm\right)\)

 

Do M là trung điểm của HC\(\Rightarrow HM=\dfrac{HC}{2}=\dfrac{\sqrt{2}}{2}\) (cm)

Áp dụng định lý py-ta-go vào tam giác AMH vuông có:

\(AH^2+HM^2=AM^2\)

\(\Leftrightarrow AM=\sqrt{AH^2+HM^2}=\sqrt{3+\dfrac{1}{2}}=\dfrac{\sqrt{14}}{2}\left(cm\right)\)

Có M và H lần lượt là tđ của HC và CA

Suy ra MN là đường trung bình của tam giác AHC

\(\Rightarrow\) MN//AH và \(MN=\dfrac{AH}{2}=\dfrac{\sqrt{3}}{2}\)(cm)

Vì \(AH\perp BC\)\(\Rightarrow MN\perp BC\)

Áp dụng định lý py-ta-go vào tam giác BNM vuông có:

\(BN^2=MN^2+BM^2=\dfrac{3}{4}+\left(BC-MC\right)^2=\dfrac{3}{4}+\left(2HC-HM\right)^2=\dfrac{3}{4}+\dfrac{9}{2}=\dfrac{21}{4}\)

\(\Rightarrow BN=\dfrac{\sqrt{21}}{2}\) (cm)

Vậy...

Ngọc Huyềnn
1 tháng 7 2021 lúc 16:51

Bạn nào giúp em với em sắp nộp bài rùi ạ!

 

Nguyễn Việt Lâm
1 tháng 7 2021 lúc 17:10

\(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow\) AH là đường cao đồng thời là trung tuyến hay H là trung điểm BC

\(\Rightarrow BH=CH\)

Pitago cho tam giác ACH: \(CH=\sqrt{AC^2-AH^2}=\sqrt{2}\)

\(\Rightarrow HM=\dfrac{1}{2}CH=\dfrac{\sqrt{2}}{2}\) \(\Rightarrow BM=BH+HM=CH+HM=\dfrac{3\sqrt{2}}{2}\)

Pitago tam giác AHM: \(AM=\sqrt{AH^2+HM^2}=\dfrac{\sqrt{14}}{2}\)

Do N là trung điểm AC, M là trung điểm HC \(\Rightarrow MN\) là đường trung bình tam giác ACH

\(\Rightarrow\left\{{}\begin{matrix}MN||AH\Rightarrow MN\perp BC\\MN=\dfrac{1}{2}AH=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

Pitago tam giác BMN: \(BN=\sqrt{BM^2+MN^2}=\dfrac{\sqrt{21}}{2}\)

an hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 9 2021 lúc 20:46

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

hay MN//BK

Xét tứ giác BMNK có MN//BK

nên BMNK là hình thang

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến ứng với cạnh huyền AB

nên HM=AM=MB

Xét ΔMAH có MA=MH

nên ΔMAH cân tại M

Minh Trần Quang
Xem chi tiết