ab - 3a - 2b = 1. Tìm chữ số a; b
Tìm các số nguyên a,b sao cho ab-2b=4b-3a
Cho hai số thực dương a, b thỏa mãn \(a+2b\ge3\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3a^2+a^2b+\dfrac{9}{2}ab^2+\left(8+a\right)b^3}{ab}\)
Tìm 2 số a và b biết a) 2a+3b=3 và 3a-2b=11
b) a+b=5 và ab=6
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
A=a^2b-2a^2b+3a(ab) tìm bậc của biểu thức
A = \(a^2b-2a^2b+3a\left(ab\right)\)
A = \(a^2b-2a^2b+3a^2b\)
Bậc của đa thức là :
2+1+2+1+2+1=9
HT
=9 nha bạn
HT
nếu đúng k mình
Thanks
Cho đơn thức \(2a^2b;\dfrac{1}{3}ab^2;-3a^2b;5x^2y.\)Tìm đơn thức đồng dạng với \(-5a^2b\)
thu gọn các đơn thức sau
a)ab.4/3a^2b^4.7abc
b)a^3b^3.a^2b^2c
c)2/3a^3b.(-1/2ab).a^2b
d)-2 1/3a^3c^21/7ac^2 6abc
e)(-1,5ab^2)1/4bca^2b
a: \(=ab\cdot\dfrac{4}{3}a^2b^4\cdot7abc=\dfrac{28}{3}a^4b^6c\)
b: \(a^3b^3\cdot a^2b^2c=a^5b^5c\)
c: \(=\dfrac{2}{3}a^3b\cdot\dfrac{-1}{2}ab\cdot a^2b=\dfrac{-1}{3}a^6b^3\)
d: \(=-\dfrac{7}{3}a^3c^2\cdot\dfrac{1}{7}ac^2\cdot6abc=-2a^5bc^5\)
e: \(=\dfrac{-3}{2}\cdot\dfrac{1}{4}\cdot ab^2\cdot bca^2\cdot b=\dfrac{-3}{8}a^3b^4c\)
Tìm a,b
ab +3a -2b = -5
\(ab+3a-2b=-5\)
\(a.\left(b+3\right)-2b-6=-5-6=-11\)
\(a.\left(b+3\right)-2.\left(b+3\right)=-11\)
\(\left(a-2\right)\left(b+3\right)=-11\)
\(\Rightarrow a-2;b+3\inƯ\left(-11\right)=\left\{-11;-1;1;11\right\}\)
a-2 | a | b+3 | b |
-11 | -9 | 1 | -2 |
-1 | 1 | 11 | 8 |
1 | 3 | -11 | -14 |
11 | 13 | -1 | -4 |
Vậy (a;b)\(\in\){(-9;-2);(1;8);(3;-14);(13;-4)}
tìm a,b E Z, biết :
ab-2b=10-3a
phải tìm tất cả các số nguyên a mới tick