Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2019 lúc 21:38

a/

\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)

\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)

b/

\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)

\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)

\(=\left(1-sinx+cosx\right)^2\)

c/

\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)

\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)

d/

\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)

Thanh Xuan
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 6 2020 lúc 23:32

\(\frac{\left(sin3x+cosx\right)sin3x+\left(cos3x+sinx\right)cos3x}{cos4x}\)

\(=\frac{sin^23x+sin3x.cosx+cos^23x+cos3x.sinx}{cos4x}=\frac{1+sin3x.cosx+cos3x.sinx}{cos4x}\)

\(=\frac{1+sin4x}{cos4x}=\frac{sin^22x+cos^22x+2sin2x.cos2x}{cos^22x-sin^22x}=\frac{\left(cos2x+sin2x\right)^2}{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}\)

\(=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{1+\frac{sin2x}{cos2x}}{1-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)

Nguyễn Thị Kim Nguyên
Xem chi tiết
Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 9:13

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

Hồng Phúc
1 tháng 6 2021 lúc 9:23

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

Học sinh
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 5 2020 lúc 14:11

\(sinx\left(1+cos2x\right)=sinx\left(1+2cos^2x-1\right)=2sinx.cosx.cosx=sin2x.cosx\)

\(tanx-\frac{1}{tanx}=\frac{sinx}{cosx}-\frac{cosx}{sinx}=\frac{sin^2x-cos^2x}{sinx.cosx}=\frac{-cos2x}{\frac{1}{2}sin2x}=-\frac{2}{tan2x}\)

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}\left(\frac{1+cosx}{cosx}\right)=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}.\frac{2cos^2\frac{x}{2}}{cosx}=\frac{2sin\frac{x}{2}.cos\frac{x}{2}}{cosx}=\frac{sinx}{cosx}=tanx\)

Thiên Yết
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Uyên Uyên
Xem chi tiết
Sonboygaming Tran
3 tháng 8 2017 lúc 18:18

Năm nay bạn lên 11 à, nếu đúng chắc bạn đang tự học phải không?

a) Bạn dùng máy tính (mode 5 3 rồi bấm 3= 1= =) máy hiện ra 2 nghiệm

x=-1/3 và x=0 (nghiệm x chính là cosx đó)

x=-1/3 (hơi lẻ đó)<=>cosx=-1/3 <=> x= (+) (-) arc cos(-1/3)+k2\(\Pi\) (k\(\in\)Z) (arc cos(-1/3) = SHIFT COS trong máy tính)

x=0<=> cosx=0<=> x=\(\dfrac{\Pi}{2}\)+l\(\Pi\) (l\(\in\)Z)

b) Bạn dùng công thức cos2x=2cos2x-1 là ra ngay thôi mà!

pt<=>cos2x+(2cos2x-1)2=0

<=>cos2x+4cos4x-4cos2x+1=0

<=>4cos4x-3cos2x+1=0 (pt vô nghiệm, thốn vl) chắc đề sai hay gì đó bạn ơi, thường người ta ít cho vô nghiệm lắm!

c) Đặt t=sinx+cosx =>t2=sin2x+cos2x+2sinxcosx=1+2sinxcosx<=>2sinxcosx=t2-1

PT trở thành:

t+t2-1=0<=>\(\left[{}\begin{matrix}t1=\dfrac{-1+\sqrt{5}}{2}\\t2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}six+cosx=t1\\sinx+cosx=t2\end{matrix}\right.\)

Mà sinxx+ cosx=\(\sqrt{2}\) sin(x+\(\dfrac{\Pi}{4}\)) ct ày không biết bạn học chưa nhưng nó sử dụng rất nhiều đấy cố mà nhớ nhé!

1) sin(x+pi/4)=\(\dfrac{\sqrt{10}-\sqrt{2}}{4}\)=A<=>x=arc sinA-pi/4+k2pi (k thuộc Z) hoặc x=pi-arc sinA-pi/4+k2pi

2) sin(x+pi/4)=\(\dfrac{-\sqrt{10}-\sqrt{2}}{4}\)=B<=>x=......... như trên vậy đó hihi!

d)ĐIều kiện: cosx khác 0 <=> x\(\ne\)pi/2+kpi và cos2x khác 0<=> x \(\ne\)\(\dfrac{\Pi}{4}\)+kpi/2

pt<=>\(\dfrac{sinx}{cosx}\)+\(\dfrac{sin2x}{cos2x}\)=0

<=>sinx.cos2x+sin2x.cosx=0

<=>sinx.cos2x+2sinx.cos2x=0 (sin2x=2sinx.cosx)

<=>sinx(cos2x+2cos2x)=0

<=>sinx(2cos2x-1+2cos2x)=0

<=>sinx(4cos2x-1)=0

1) sinx=0<=>x=kpi (nhận)

2)4cos2x-1=0<=>cosx=1/2<=>x=+ - pi/3+k2pi Hoặc cosx=-1/2

<=>x= + - 2pi/3+kpi(nhận)

Chúc bạn học tốt !

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2023 lúc 2:54

1B

2A

3A

4C

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2020 lúc 14:01

ĐKXĐ:

29.

\(\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx.cosx\ne0\)

\(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)

30.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\) (như câu trên)

31.

\(sinx\ne0\Leftrightarrow x\ne k\pi\)

32.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\sin2x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\sin2x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 9 2020 lúc 14:04

33.

\(\left\{{}\begin{matrix}cosx\ne0\\cos\frac{x}{2}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne\pi+k2\pi\end{matrix}\right.\)

34.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\\cotx\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sin2x\ne0\\cotx\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne\frac{\pi}{4}+k\pi\end{matrix}\right.\)

35.

\(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sinx\ne0\)

\(\Leftrightarrow x\ne k\pi\)

Nguyễn Việt Lâm
18 tháng 9 2020 lúc 14:08

36.

\(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

37.

\(cos3x\ne cosx\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)

38.

\(\left\{{}\begin{matrix}x\ge0\\sin\pi x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\pi x\ne k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne k\end{matrix}\right.\)

39.

\(\left\{{}\begin{matrix}cos\left(x-\frac{\pi}{3}\right)\ne0\\tan\left(x-\frac{\pi}{3}\right)\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\\x-\frac{\pi}{3}\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{5\pi}{6}+k\pi\\x\ne-\frac{\pi}{12}+k\pi\end{matrix}\right.\)