Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 5 2019 lúc 1:56

Ta có:  y ' = - 3 x 2 + 2 ( 2 m - 1 ) x + m - 2 ( * )

Để hàm số đã cho có cực đại và cực tiểu khi và chỉ khi: phương trình có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 3 2018 lúc 5:42

Đáp án D.

y = -x3 + (2m – 1)x2 – (2 – m)x – 2

TXĐ: D = R

y' = -3x2 + 2(2m – 1) – 2 + m

Đồ thị hàm số có cực đại và cực tiểu <=> Pt y’ = 0 có hai nghiệm phân biệt

<=>  Δ’ = (2m – 1)2 + 3(-2 + m) > 0 <=> 4m2 – m – 5 > 0 <=> ∈ (-∞; -1) ∪ (5/4; +∞)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 12 2018 lúc 7:36

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 6:25

· Đường tròn

C m : x 2 + y 2 - 2 m x - 4 m y + 5 m 2 - 1 = 0

có tâm I ( m;2m ), bán kính R = 1.Ta có:

I B = 5 m 2 + 4 m + 8 = 5 m + 2 5 2 + 36 5 ≥ 6 5 > 1 = R

điểm B nằm ở phía ngoài đường tròn  C m . Do đó điểm A nằm ở phía trong đường tròn C m , tức là: 

L A < 1 = R ⇔ 5 m 2 - 8 m + 4 < 1 ⇔ 5 m 2 - 8 m + 3 < 0 ⇔ 3 5 < m < 1

Đáp án C

nguyen thi be
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 1 2019 lúc 14:00

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT  = y(1) = (16/3).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2018 lúc 17:39

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T  = y(1) = (16/3).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 8 2018 lúc 2:49

Đáp án: C.

Để có cực đại, cực tiểu, phương trình y' = 3 x 2  + 2mx = 0 phải có hai nghiệm phân biệt.

Phương trình y' = x(3x + 2m) = 0 có hai nghiệm phân biệt x1 = 0, x2 = -2m/3 khi và chỉ khi x ≠ 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 6 2018 lúc 16:36

Đáp án: C.

Để có cực đại, cực tiểu, phương trình y' = 3 x 2  + 2mx = 0 phải có hai nghiệm phân biệt.

Phương trình y' = x(3x + 2m) = 0 có hai nghiệm phân biệt  x 1  = 0,  x 2  = -2m/3 khi và chỉ khi x ≠ 0.