Cho a, b, c thỏa mãn a+b+c=0. Chứng minh rằng:
8a+8b+8c>=2a+2b+2c
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
a, cho các số nguyên dương a, b, c thỏa mãn a/a+2b=b/b+2c=c/c+2
chứng minh rằng tổng (a+b+c)chia hết cho 3
b, cho các số nguyên dương a, b, c, thỏa mãn 1/a^2+1/b^2+1/c^2+1/d^2=1
mọng mn giúp đỡ
Ta có:
\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\) vì a,b,c nguyên dương
\(\Rightarrow\left\{{}\begin{matrix}3a=a+2b\\3b=b+2c\\3c=c+2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=2b\\2b=2c\\2c=2a\end{matrix}\right.\)
\(\Rightarrow a=b=c\Rightarrow a+b+c=3a⋮3\left(đpcm\right)\)
Vì vai trò của a, b, c, d như nhau nên giả sử \(a\le b\le c\le d\)
\(\Rightarrow a^2\le b^2\le c^2\le d^2\)
\(\Rightarrow\frac{1}{a^2}\ge\frac{1}{b^2}\ge\frac{1}{c^2}\ge\frac{1}{d^2}\)
\(\Rightarrow4.\frac{1}{a^2}\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\)
\(\Rightarrow\frac{4}{a^2}\ge1\Rightarrow a^2\le4\)
\(\Rightarrow a\le2\)
TH1: \(a=1\)
⇒Không có b, c, d thỏa mãn đề bài.
TH2: \(a=2\)
\(\Rightarrow a=b=c=d=2\) thỏa mãn đề bài
Vậy
\(a=b=c=d=2\) thỏa mãn đề bàicho abc>0 thỏa mãn \(a^2+b^2+c^2=0\)chứng minh rằng \(a^3+2b^3+3c^3\ge\dfrac{6}{7}\)
Hình như trong này có bài giải bạn vào xem nhée https://cunghocvui.com/danh-muc/toan-lop-10
Cho a, b thỏa mãn sin(2a+b)=3sinb .Chứng minh rằng tan(a+b)=2tana
Lời giải:
Ta có:
$\sin (2a+b)=3\sin b$
$\Leftrightarrow \sin (a+b+a)=3\sin (a+b-a)$
$\Leftrightarrow \sin (a+b)\cos a+\cos (a+b)\sin a=3\sin (a+b)\cos a-3\cos (a+b)\sin a$
$\Leftrightarrow 4\cos (a+b)\sin a=2\sin (a+b)\cos a$
$\Leftrightarrow 2\cos (a+b)\sin a=\sin (a+b)\cos a$
$\Rightarrow \frac{2\sin a}{\cos a}=\frac{\sin (a+b)}{\cos (a+b)}$
$\Rightarrow 2\tan a=\tan (a+b)$
Ta có đpcm.
a) Cho \(a,b,c\in\left[0;1\right]\) . Chứng minh rằng:
\(a^2+b^2+c^2\le1+a^2b\sqrt{b}+b^2c\sqrt{c}+c^2a\sqrt{a}\)
b) Cho \(a,b,c\) là các số thực dương thoả mãn \(ab+bc+ca=1\) . Chứng minh rằng:
\(\left(a^2+2b^2+3\right)\left(b^2+2c^2+3\right)\left(c^2+2a^2+3\right)\ge64\left(a^2+b^2+c^2\right)\)
Cần bài b thôi
a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\)
\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)
\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )
Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)
Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)
Chuyên Hà Tĩnh 2015
Cho ba số a,b,c thỏa mãn: \(c^2+2\left(ab-bc-ac\right)=0,b\ne c\)và \(a+b\ne c\). Chứng minh rằng
\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)
\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)
\(\Leftrightarrow2a^2b-2a^2c+ac^2-bc^2-2ab^2+2b^2c=0\)
\(\Leftrightarrow2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2=b\left(2ac-c^2-2ab+2bc\right)=0\)(đúng)
=> đpcm
Từ \(c^2+2\left(ab-bc-ac\right)=0.\)
\(\Rightarrow c^2+2ab-2bc-2ac=0\)
\(\Rightarrow\frac{c^2}{2}+ab-bc-ac=0\)
\(\Rightarrow bc=\frac{c^2}{2}+ab-ac\)
Có : \(2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2\)
\(=2abc-bc^2-2ab^2+2bc^2\)
\(=-b\left(-2ac+c^2+2ab-2bc\right)\)
\(=-b\left[c^2+2\left(ab-bc-ac\right)\right]=-b.0=0\)\(\left(đpcm\right)\)
Cho a,b,c >0. Chứng minh rằng
2(\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\)) \(\ge\) 1+\(\dfrac{b}{b+2a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)
Cho 3 số a,b,c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca nhỏ hơn hoặc bằng 0.
Cho các số a, b, c khác 0 thỏa mãn:\(\dfrac{a-b+c}{2b}\)=\(\dfrac{c-a+b}{2a}\)=\(\dfrac{a-c+b}{2c}\)
Tính giá trị biểu thức P=(1+\(\dfrac{c}{b}\)).(1+\(\dfrac{b}{a}\)).(1+\(\dfrac{a}{c}\))
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(P=\dfrac{\left(b+c\right)}{b}.\dfrac{\left(a+b\right)}{a}.\dfrac{\left(a+c\right)}{c}=\dfrac{-a}{b}.\dfrac{-c}{a}.\dfrac{-b}{c}=-1\)
TH2: \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}=\dfrac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b+c}{2b}=\dfrac{1}{2}\\\dfrac{c-a+b}{2a}=\dfrac{1}{2}\\\dfrac{a-c+b}{2c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\c+b=2a\\a+b=2c\end{matrix}\right.\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
cho a,b,c>0 chứng minh rằng \(\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\)>=\(\dfrac{3}{2}\)