Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lưu ly
Xem chi tiết
Kinomoto Sakura
8 tháng 8 2021 lúc 16:32

Bài 1:

Ta : a + b - 2c = 0

⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:

(2c − b)2 + b2 + (2c − b).b − 3c2 = 0

⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0

⇔ b2 − 2bc + c2 = 0

⇔ (b − c)2 = 0

⇔ b − c = 0

⇔ b = c

⇒ a + c − 2c = 0

⇔ a − c = 0

⇔ a = c

⇒ a = b = c 

Vậy a = b = c

linhchi buithi
Xem chi tiết
Trên con đường thành côn...
22 tháng 3 2020 lúc 8:44

Ta có:

\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\) vì a,b,c nguyên dương

\(\Rightarrow\left\{{}\begin{matrix}3a=a+2b\\3b=b+2c\\3c=c+2a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2a=2b\\2b=2c\\2c=2a\end{matrix}\right.\)

\(\Rightarrow a=b=c\Rightarrow a+b+c=3a⋮3\left(đpcm\right)\)

Khách vãng lai đã xóa
Trên con đường thành côn...
22 tháng 3 2020 lúc 8:54

Vì vai trò của a, b, c, d như nhau nên giả sử \(a\le b\le c\le d\)

\(\Rightarrow a^2\le b^2\le c^2\le d^2\)

\(\Rightarrow\frac{1}{a^2}\ge\frac{1}{b^2}\ge\frac{1}{c^2}\ge\frac{1}{d^2}\)

\(\Rightarrow4.\frac{1}{a^2}\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\)

\(\Rightarrow\frac{4}{a^2}\ge1\Rightarrow a^2\le4\)

\(\Rightarrow a\le2\)

TH1: \(a=1\)

⇒Không có b, c, d thỏa mãn đề bài.

TH2: \(a=2\)

\(\Rightarrow a=b=c=d=2\) thỏa mãn đề bài

Vậy

\(a=b=c=d=2\) thỏa mãn đề bài
Khách vãng lai đã xóa
Ngọc Linh
Xem chi tiết
phan thị linh
20 tháng 12 2018 lúc 16:31

Hình như trong này có bài giải bạn vào xem nhée https://cunghocvui.com/danh-muc/toan-lop-10

Thảo Trịnh
Xem chi tiết
Akai Haruma
27 tháng 2 2020 lúc 12:32

Lời giải:

Ta có:

$\sin (2a+b)=3\sin b$

$\Leftrightarrow \sin (a+b+a)=3\sin (a+b-a)$

$\Leftrightarrow \sin (a+b)\cos a+\cos (a+b)\sin a=3\sin (a+b)\cos a-3\cos (a+b)\sin a$

$\Leftrightarrow 4\cos (a+b)\sin a=2\sin (a+b)\cos a$

$\Leftrightarrow 2\cos (a+b)\sin a=\sin (a+b)\cos a$

$\Rightarrow \frac{2\sin a}{\cos a}=\frac{\sin (a+b)}{\cos (a+b)}$

$\Rightarrow 2\tan a=\tan (a+b)$

Ta có đpcm.

Khách vãng lai đã xóa
Lê Hà Phương
Xem chi tiết
Lê Hà Phương
14 tháng 8 2016 lúc 13:41

a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\) 

\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)

\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )

Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)

Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)

Lê Tài Bảo Châu
Xem chi tiết

\(\frac{2a^2-2ac+c^2}{2b^2-2bc+c^2}=\frac{a-c}{b-c}\)

\(\Leftrightarrow2a^2b-2a^2c+ac^2-bc^2-2ab^2+2b^2c=0\)

\(\Leftrightarrow2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2=b\left(2ac-c^2-2ab+2bc\right)=0\)(đúng)

=> đpcm

Phạm Thị Thùy Linh
4 tháng 8 2019 lúc 21:11

Từ \(c^2+2\left(ab-bc-ac\right)=0.\)

\(\Rightarrow c^2+2ab-2bc-2ac=0\)

\(\Rightarrow\frac{c^2}{2}+ab-bc-ac=0\)

\(\Rightarrow bc=\frac{c^2}{2}+ab-ac\)

Có : \(2a\left(ab-ac+\frac{c^2}{2}\right)-bc^2-2ab^2+2bc^2\)

\(=2abc-bc^2-2ab^2+2bc^2\)

\(=-b\left(-2ac+c^2+2ab-2bc\right)\)

\(=-b\left[c^2+2\left(ab-bc-ac\right)\right]=-b.0=0\)\(\left(đpcm\right)\)

Lê Tài Bảo Châu
2 tháng 8 2019 lúc 19:44

Chị giải thích dòng cuối đi 

Phương Anh Đỗ
Xem chi tiết
Phương Anh Đỗ
5 tháng 6 2018 lúc 22:36

lm giúp e vs ạkhocroi

Moo Pii
Xem chi tiết
Dương Thị Huyền Trang
27 tháng 1 2016 lúc 8:25

Vì a+b+c=0 nên ab,bc,ac bằng 0

Chờ thị trấn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 20:20

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(P=\dfrac{\left(b+c\right)}{b}.\dfrac{\left(a+b\right)}{a}.\dfrac{\left(a+c\right)}{c}=\dfrac{-a}{b}.\dfrac{-c}{a}.\dfrac{-b}{c}=-1\)

TH2: \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a-b+c}{2b}=\dfrac{c-a+b}{2a}=\dfrac{a-c+b}{2c}=\dfrac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b+c}{2b}=\dfrac{1}{2}\\\dfrac{c-a+b}{2a}=\dfrac{1}{2}\\\dfrac{a-c+b}{2c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+c=2b\\c+b=2a\\a+b=2c\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

chán
Xem chi tiết