cm:
\(x^2+xy+y^2+1\ge0\) với mọi x y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
CM : \(x^2-xy+y^2\)\(\ge0\) với mọi x ; y
x2 - xy + y2
= x2 - 2x\(\dfrac{y}{2}\)+ \(\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2\)
= ( x - \(\dfrac{y}{2}\))2 + \(\dfrac{3y^2}{4}\)
Do : ( x - \(\dfrac{y}{2}\))2 lớn hơn hoặc bằng 0 với mọi x
=> ( x - \(\dfrac{y}{2}\))2 + \(\dfrac{3y^2}{4}\)lớn hơn hoặc bằng \(\dfrac{3y^2}{4}\) với mọi x và lớn hơn hoặc bằng 0
Dấu " =" xảy ra khi \(\dfrac{3y^2}{4}\)= 0 => y = 0
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Cm rằng x2 + xy + y^2 + 1 > 0 với mọi x, y
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)
CM: x2 + xy + y2 + 1 > 0 với mọi x , y
x2 + xy + y2 + 1 = (x2 + 2.x. \(\frac{y}{2}\) + (\(\frac{y}{2}\))2 ) + \(\frac{3y^2}{4}\) + 1 = (x + \(\frac{y}{2}\))2 + \(\frac{3y^2}{4}\) + 1 \(\ge\) 0 + 0 + 1 = 1> 0 với mọi x; y
Ta có:
x2+xy+y2+1=x2+xy+1/4.y2+3/4.y2+1=(x+1/2.y)2+3/4.y2+1
Mà (x+1/2.y)2 \(\ge\)0
3/4.y2>=0
1>0
Suy ra (x+1/2.y)2+3/4.y2+1>0
Hay x2+xy+y2+1>0(đpcm)
≥0
3/4.y2>=0
1>0
Suy ra (x+1/2.y)2+3/4.y2+1>0
Hay x2+xy+y2+1>0(đpcm)
Cho 2 số \(x,y\ge0\)
CM: \(x+y\ge2\sqrt{xy}\)
Ta có :x+y\(\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+2\sqrt{x}\sqrt{y}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)(luôn đúng với mọi x,y\(\ge0\))
Dấu"+" xảy ra khi:\(\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\)
Vậy với mọi x,y\(\ge0\) thì x+y\(\ge2\sqrt{xy}\)
đong 2 bạn đổi lại dấu +\(2\sqrt{xy}\) thành -\(2\sqrt{xy}\) giùm mình
1. CM:
a) x2 - 6x + 10 > 0 với mọi x
b) x2 - 4x + 7 > hoặc = 3 với mọi x
c) x2 + x + 1 > 0 với mọi x
d) x2 + y2 + 4x - 6y + 15 = 0 với mọi x
2. CM: (a - b)2 = (a + b)2 - 4ab
3. Cho x + y = 7 và xy = -3. Tính: x2 + y2
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
Cho x,y\(\ge0\); \(x^2+y^2=2\). Tìm min,max A=\(\dfrac{x^3+y^3+4}{xy+1}\)
\(A=\dfrac{x^3+y^3+4}{xy+1}\ge\dfrac{x^3+y^3+4}{\dfrac{x^2+y^2}{2}+1}=\dfrac{x^3+y^3+4}{2}=\dfrac{\dfrac{1}{2}\left(x^3+x^3+1\right)+\dfrac{1}{2}\left(y^3+y^3+1\right)+3}{2}\)
\(\ge\dfrac{\dfrac{3}{2}\left(x^2+y^2\right)+3}{2}=3\)
\(A_{min}=3\) khi \(x=y=1\)
Do \(x^2+y^2=2\Rightarrow\left\{{}\begin{matrix}x\le\sqrt{2}\\y\le\sqrt{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^3\le\sqrt{2}x^2\\y^3\le\sqrt{2}y^2\end{matrix}\right.\)
\(\Rightarrow A\le\dfrac{\sqrt{2}\left(x^2+y^2\right)+4}{xy+1}=\dfrac{4+2\sqrt{2}}{xy+1}\le\dfrac{4+2\sqrt{2}}{1}=4+2\sqrt{2}\)
\(A_{max}=4+2\sqrt{2}\) khi \(\left(x;y\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)
Cho \(x\ge0;y\ge0;x+y< 1\)
Tìm GTNN của: \(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Cho \(x\ge0,y\ge0,x+y+xy=3\). Tìm Min Y =x+y+xy+\(\frac{1}{1+xy}+\frac{x}{1+y}+\frac{y}{1+x}\)