Tìm công thức tính số đường chéo của đa giác có n cạnh theo n.
Nêu các công thức tính số đường chéo của 1 đa giác bất kì theo n ( số cạnh ) và theo góc trong hoặc góc ngoài của đa giác đó
Công thức tính số đường chéo theo n: \(\frac{n\left(n-3\right)}{2}\)
cho em hỏi mấy câu này;
1/ công thức tính số đường chéo của đa giác
2/ công thức tính tổng số đo các góc của đa giác
3/ công thức tính số cạnh của đa giác
4/ công thức tính số đường chéo xuất phát từ 1 đỉnh của đa giác
hình như toàn chép bài nhau thì phải
Gọi n là số cạnh của đa giác.
Ta có :
- Số đường chéo của đa giác là : n(n−3)2
Cái này dễ chứng minh thôi bn!
Từ mỗi đỉnh của hình n giác lồi ta vẽ được n - 1 đoạn thẳng nối đỉnh đó với n - 1 đỉnh còn lại, trong đó có 2 đoạn thẳng trùng với 2 cạnh của đa giác. Vậy qua mỗi đỉnh của hình n giác lồi vẽ được n - 3 đường chéo, hình n giác có n đỉnh nên vẽ được n(n - 3) đường chéo, trong đó mỗi đường chéo được tính 2 lần nên thực chất chỉ có n(n−3)2 đường chéo.
- Tổng số đo các góc trong đa giác : 180o.(n−2)
Còn số cạnh của đa giác thì tự đếm ra, nếu đề bài cho 1 số gt bắt tìm số cạnh thì dựa vào công thức tính đường chéo hay công thức tính số đo 1 góc đa giác đều (180o.(n−2)n.
Số đường chéo xuất phát từ mỗi đỉnh của đa giác n cạnh là n - 3.
__________________
Cho đa giác đều n cạnh ( n ≥ 4 ) . Tìm n để đa giác có số đường chéo bằng số cạnh?
A. n = 5
B. n = 16
C. n = 6
D. n = 8
Đáp án A
Phương pháp
Tìm số cạnh và số đường chéo của đa giác đều n cạnh.
Cách giải
Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.
Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2 − n
Theo giả thiết bài toán ta có
C n 2 − n = n ⇔ C n 2 = 2 n ⇔ n ! 2 ! n − 2 ! = 2 n ⇔ n n − 1 = 4 n ⇔ n − 1 = 4 ⇔ n = 5
Cho đa giác đều n cạnh (n ≥ 4). Tìm n để đa giác có số đường chéo bằng số cạnh?
A. n = 5
B. n = 16
C. n = 6
D. n = 8
Đáp án A
Phương pháp
Tìm số cạnh và số đường chéo của đa giác đều n cạnh.
Cách giải
Khi nối hai đỉnh bất kì của đa giác ta được một số đoạn thẳng, trong đó bao gồm cạnh của đa giác và đường chéo của đa giác đó.
Đa giác đều n cạnh có n đỉnh, do đó số đường chéo là C n 2 - n
Theo giả thiết bài toán ta có
Cho đa giác lồi n đỉnh. Biết rằng số hiệu số đường chéo của đa giác và số cạnh là 25. Tìm n.
số đường ché của đa giác lồi n cạnh là n (n-3) /2. hỏi đa giác lồi có mấy cạnh nếu số đường chéo là 33
Đặt n(n-3)/2 (*)
*)Với n=4 => có 4(4-3)/2=2
=> * đúng với n =2
*)Giả sử (*)đúng với n=k có => k(k-3)/2 với đa giác lồi có k cạnh
*) Ta chứng minh cho (*) đúng với n=k+1 <=> đa giác lồi k+1 cạnh có (k+1)(k-2)/2 đường chéo.
Thật vậy,để ý rằng,đa giác lồi có k cạnh nếu thêm 1 đỉnh sẽ có thêm k-1 đường chéo
=>
số đường chéo của đa giác lồi k+1 cạnh là :
k(k-3)/2 +k-1= (k^2-k-2)/2=(k+1)(k-2)/2 (đúng)
=> đpcm
Mỗi góc của một đa giác đều n cạnh bằng 120°. Tính số đường chéo của đa giác
Ta có: ( n − 2 ) .180 0 n = 120 0 . Tìm được n = 6 Þ số đường chéo là 9 đường chéo
a) Tính số đường chéo của đa giác có 24 cạnh
b) Tính số cạnh của đa giác biết đường chéo là 170 đường
a) \(\frac{\left(24-3\right).24}{2}=252\)đường chéo
b) \(\left(n-3\right).n=340\)
\(n^2-3n=340\)
\(n^2-3n-340=0\)
\(n^2-20n+17n-340=0\)
\(n\left(n-20\right)+17\left(n-20\right)\)
\(\left(n+17\right)\left(n-20\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}n+17=0\\n-20=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=-17\\n=20\end{cases}}\)
n = -17 ( loại )
n = 20 ( nhận )
Vậy n = 20 hay số cạnh của đa giác là 20
1 Đa giác có n cạnh có :
- Số đường chéo từ 1 đỉnh là : (n - 3)
- Số đỉnh là n
Do 1 đường chéo nối 2 đỉnh
=> 1 Đa giác có n cạnh có n(n - 3)/2 đường chéo
biết tổng số đường chéo là 170
=> n(n - 3)/2 = 170
=> n² - 3n - 340 = 0
∆ = (-3)² - 4.(-340) = 1369
=> √∆ = 37
=> n = ... (tự giải)
b) Đa giác có n cạnh có :
- Số đường chéo từ 1 đỉnh là : (n - 3)
- Số đỉnh là n
Do 1 đường chéo nối 2 đỉnh
=> 1 Đa giác có n cạnh có n \(\frac{\left(n+3\right)}{2}\)đường chéo
Biết tổng số đường chéo là 170
\(\Rightarrow\frac{n\left(n-3\right)}{2}=170\)
\(\Rightarrow n^2-3-340=0\)
\(\Delta=\left(-3\right)^2-4.\left(-340\right)=1369\)
\(\sqrt{\Delta}=37\)
\(\Rightarrow n=37\)
Bài 1: Tìm số cạnh của một đa giác biết số đường chéo hơn số cạnh là 7. Bài 2: Tổng tất cả các góc trong và một góc ngoài của một đa giác có số đo là 47058,5°. Hỏi đa giác đó có bao nhiêu cạnh? Bài 3: Tổng số đo các góc của một đa giác n - cạnh trừ đi góc A của nó bằng 5700. Tính số cạnh của đa giác đó và A. Bài 4: Một lục giác đều và một ngũ giác đều chung cạnh AD (như hình vẽ). Tính các góc của tam giác ABC: (Hình đây) [Giúp mình với mng ơi, mình cần gấp. Mấy bài trên thuộc bài Đa giác, đa giác đều nha]