Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức
Xem chi tiết
Nhược Vũ
Xem chi tiết
Nguyễn Phương Anh
2 tháng 2 2021 lúc 10:15

Xem lại đề bạn nhé

Nguyễn Trang
Xem chi tiết
Akai Haruma
4 tháng 4 2021 lúc 3:25

Lời giải:

Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:

\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)

Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.

Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$

$\Leftrightarrow x=2x-3=3$ (thỏa mãn)

Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$

$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)

Vậy $x=3$ hoặc $x=1$

 

 

Thu Phương Nguyễn
Xem chi tiết
Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

FC_Đoàn Văn Hậu
Xem chi tiết
Dương Lam Hàng
21 tháng 3 2019 lúc 8:59

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

Đại Dương
21 tháng 3 2019 lúc 9:08

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

Đập Vỡ Đá
Xem chi tiết
Bùi Thị
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2017 lúc 20:44

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

Bùi Thị
3 tháng 7 2017 lúc 10:12

ban tra loi nhanh giup mk nhe

Bùi Thị
3 tháng 7 2017 lúc 11:39

Nhanh lên bạn ơi , mai mình phải nộp rồi . 

Levi Ackerman
Xem chi tiết
迪丽热巴·迪力木拉提
19 tháng 5 2021 lúc 8:41

undefined

✿✿❑ĐạT̐®ŋɢย❐✿✿
19 tháng 5 2021 lúc 10:46

\(ĐKXĐ:x\in R\)

Phương trình cho tương đương :

\(\left(x^2-1\right)\left(x^2+1\right)+\left(x^2+1\right)\sqrt{x^2+1}=0\)

Đặt \(\sqrt{x^2+1}=a\left(a\ge1\right)\Rightarrow a^2-2=x^2-1\)

Khi đó pt trở thành :

\(a^2\left(a^2-2\right)+a^3=0\)

\(\Leftrightarrow a^2\left(a^2-2+a\right)=0\)

\(\Leftrightarrow a^2\left(a+2\right)\left(a-1\right)=0\)

\(\Leftrightarrow a=1\) ( do \(a\ge1\) )

\(\Rightarrow\sqrt{x^2+1}=1\Rightarrow x^2+1=1\Rightarrow x=0\) ( Thỏa mãn )

Vậy \(S=\left\{0\right\}\)