Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Toàn Phan
Xem chi tiết
Nguyễn Hoàng Minh
27 tháng 12 2021 lúc 11:25

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

Xuyen Phan
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

canthianhthu
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 9 2020 lúc 20:45

a) x2 - 12x + 33

= ( x2 - 12x + 36 ) - 3

= ( x - 6 )2 - 3 ≥ -3 ∀ x

Đẳng thức xảy ra <=> x - 6 = 0 => x = 6

Vậy GTNN của biểu thức = -3 <=> x = 6 

b) 9x2 - 6x + 5

= ( 9x2 - 6x + 1 ) + 4

= ( 3x - 1 )2 + 4 ≥ 4 ∀ x 

Đẳng thức xảy ra <=> 3x - 1 = 0 => x = 1/3

Vậy GTNN cua biểu thức = 4 <=> x = 1/3

c) x2 + x + 3

= ( x2 + x + 1/4 ) + 11/4

= ( x + 1/2 )2 + 11/4 ≥ 11/4 ∀ x

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy GTNN của biểu thức = 11/4 <=> x = -1/2

Khách vãng lai đã xóa
Nguyễn Thị Hồng Trâm
Xem chi tiết
Edogawa Conan
30 tháng 9 2019 lúc 5:53

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2

Bangtan Sonyeondan
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 11 2021 lúc 14:46

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Nguyễn Thái Hà
Xem chi tiết
ST
4 tháng 7 2018 lúc 16:42

1/ 

a, đề sai ko

b, \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)

2/

a,\(A=4x^2+12x+15=\left(4x^2+12x+9\right)+6=\left(2x+3\right)^2+6\)

Vì \(\left(2x+3\right)^2\ge0\Rightarrow A=\left(2x+3\right)^2+6\ge6\)

Dấu "=" xảy ra khi 2x+3=0 <=> x=-3/2

Vậy Amin = 6 khi x=-3/2

b, \(B=x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2-2\ge-2\)

Dấu "=" xảy ra khi x=2

Vậy Bmin=-2 khi x=2

Nguyễn Bảo Châu
Xem chi tiết
Thảo
24 tháng 9 2018 lúc 21:04

ta có gtnn của biểu thức là -3

사랑해 @nhunhope94
24 tháng 9 2018 lúc 21:06

tách ra hằng đẳng thức thứ...-2^3-2^3 -1 

= ( x+2 ) ^ 3 -9 còn lại tự nha

Việt Hoàng ( Tiếng Anh +...
24 tháng 9 2018 lúc 21:11

B=x+6x^2+12x+8-9

  =(x+2)^2-9

Vì(x+2)^2\(\ge\)0=>(x+2)^2-9\(\ge\)-9

Dấu = xảy ra <=>x+2=0

                     <=>x=-2

Vậy MinB=-9<=>x=-2

Nguyễn Ngọc Thảo Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 15:01

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

miêu miêu
Xem chi tiết
Thanh Ngân
11 tháng 7 2018 lúc 22:11

\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)

                                    =  \(\left(2x-6\right)^2-25>=-25\)

                                       

A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)

<=> \(x=3\)

các câu còn lại tương tự

Phạm Ngọc Anh
11 tháng 7 2018 lúc 22:31

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(a,A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

\(b,B=x^2-x+1\)

\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

\(c,C=-x^2+6x-15\)

\(C=-\left(x^2-6x+15\right)\)

\(C=-\left(x^2-6x+4+11\right)\)

\(C=-\left[\left(x-2\right)^2+11\right]\)

\(C=-\left(x-2\right)^2-11\)

Nhận xét:  \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxC=-11\Leftrightarrow x=2\)

\(d,D=\left(x-3\right)\left(1-x\right)-2\)

\(D=x-x^2-3+3x-2\)

\(D=-x^2+4x-5\)

\(D=-\left(x^2-4x+5\right)\)

\(D=-\left(x^2-4x+4+1\right)\)

\(D=-\left[\left(x-2\right)^2+1\right]\)

\(D=-\left(x-2\right)^2-1\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxD=-1\Leftrightarrow x=2\)