Tìm a thuộc Z để
a/ A=\(\frac{a+7}{5-a}>0\)
b/ B=\(\frac{4-a}{a-2}< 0\)
giúp mk bài này vs nha
1 . tìm x thuộc Z , bt :
a. (x+1) (x-5) < 0
b. (x-2) (x+ \(\frac{5}{7}\)) > 0
Giúp mk vs , đag gấp lắm giúp mk ik
a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.
Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:
\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)
b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2 (1)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)
Trả lời giúp mk câu này nha!!!
Cho a, b thuộc Z, b>0. So sánh 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{a+2001}{b+2001}\)
Ban tham khao :Câu hỏi của Nguyễn Phùng Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath
GIÚP MÌNH LÀM BÀI NÀY NHA !!
\(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{4}\sqrt{ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)VS a,b >=0
Bài 1:
Cho tỉ lệ thức \(\frac{x}{4}=\frac{y}{7}\)và xy=112. Tìm x và y.
Bài 2:
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(với b + d khác 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
Bài 3:
Cho a,b,c,d khác 0. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Giúp mk vs mk sẽ tick cho nha!
Bài 1: Ta có: \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)
=> 7xy=4yy
=> 7.112=4.y2
=> y2=784:4
=> y2=196.
Mà vì 196= 14.14 => y=14 (2)
TỪ (1) và (2) => 14.4=x.7
=> x=56:7=8
Vậy x=8;y=14
Mọi người ơi, giúp e vs ạ, e đg cần gấp. Ai nhanh 5 tick!!! HELP ME!!!
1,Tìm x thuộc Z biết:
(x2+1)(x+2) > 0
2, Tìm a,b thuộc Z, biết a.b=12 và a+b= -7
3, Tính giá trị các biểu thức sau một cách hợp lí
a) A= \(\frac{4}{7}.\frac{3}{5}.\frac{7}{4}.\left(-20\right).\frac{5}{6}\)
b) B= \(\left(\frac{81}{121}+\frac{4}{45}-\frac{25}{113}\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
4, Tính
B = \(\frac{2^2}{3}.\frac{3^2}{8}.\frac{4^2}{15}.\frac{5^2}{24}.\frac{6^2}{35}.\frac{7^2}{48}.\frac{8^2}{63}.\frac{9^2}{80}\)
So sánh số hữu tỉ \(\frac{a}{b}\)( a,b thuộc Z, b # 0) với số 0 khi a,b khác dấu
Ai giúp mk vs nhanh mk kick
khi a,b khác giấu và b#0 ta có
-a/b hoặc a/-b
vì hai số hữu tỉ là số âm nên=>a/b<0
Bài 1: Tìm x và y thuộc Z:
a,x.y=-15
b,x.y=-13
c,x.y=85
Bài 2:Tìm x thuộc Z
a, (x-1).(x-2)=0
b,x-(x+4)(x-5)=0
c,-2(x^2-25)=0
d,-x.(4-x^2)=0
Bài 3: Tìm x thuộc N
a,-7(x-3)>0
b,( x^2-1).(x^2-13)>0
c, (x-1).(x-3)<0
Giaỉ nhanh bài này giúp mình nha! Ai nhanh tay nhất mình sẽ cho tick. ^-^
0
1a) x.y = -15 = (-3).5 = (-5).3 = (-1).15 = (-15).1
Vậy x = { -3;5;-5;3;-1;15;-15;1}
Với y tương ứng = { 5;-3;3;-5;15;-1;1;-15}
b) x.y = -13 = (-1).13 = (-13).1
Vậy x = { -1;13;-13;1}
Với y tương ứng = { 13;-1;1;-13}
c) x.y = 85 = 1.85 = 85.1 = 5.17 = 17.5
Vậy x = {1;85;85;1;5;17;17;5}
Với y tương ứng = { 85;1;1;85;17;5;5;17}
2;3: Tự làm
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\). Tính A=\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\).
Giúp mk nha tối nay mk đang ôn để mai thầy kt nên giúp mk nhanh nha.
bạn đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)=\left(m;n;p\right)\)
thì ta có \(\hept{\begin{cases}m+n+p=1\\\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=0\end{cases}}\)
từ gt 2 , ta có \(\frac{mn+np+pn}{mpn}=0\Rightarrow mn+np+pm=0\)
từ giả thiết 1, ta có \(\left(m+n+p\right)^2=1\Rightarrow m^2+n^2+p^2+2\left(mn+np+pm\right)=1\)
=> \(m^2+n^2+p^2=1\) hay \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
vậy A=1
2. Cho \(P=\frac{3-a}{a+10}\) ( a thuộc Z)
a/ Tìm a để P>0
b/ Tìm a để P<0
3. Tìm các số hữu tỉ x, y, z biết:
a/ \(\frac{7}{3}< x< \frac{17}{2}\)
b/ \(\frac{-3}{2}< y< 2\)
c/ \(\frac{-17}{3}< z< \frac{-3}{2}\)
4/ Cho a, b, m thuộc Z; m>0
Chứng minh rằng nếu a<b thì
\(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
bài 4.
\(\frac{a}{m}\)=\(\frac{2a}{2m}\)=\(\frac{a+a}{2m}\); \(\frac{a+b}{2m}\)
Vì ta có a<b=> a+a<a+b
=> \(\frac{a+a}{2m}\)<\(\frac{a+b}{2m}\)=>\(\frac{a}{m}\)<\(\frac{a+b}{2m}\)(1)
\(\frac{b}{m}\)=\(\frac{2b}{2m}\)=\(\frac{b+b}{2m}\); \(\frac{a+b}{2m}\)
Vì a<b=>a+b<b+b
=>\(\frac{a+b}{2m}\)<\(\frac{b+b}{2m}\)=>\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)(2)
từ(1) và(2) ta có \(\frac{a}{m}\)<\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)