2. Cho \(P=\frac{3-a}{a+10}\) ( a thuộc Z)
a/ Tìm a để P>0
b/ Tìm a để P<0
3. Tìm các số hữu tỉ x, y, z biết:
a/ \(\frac{7}{3}< x< \frac{17}{2}\)
b/ \(\frac{-3}{2}< y< 2\)
c/ \(\frac{-17}{3}< z< \frac{-3}{2}\)
4/ Cho a, b, m thuộc Z; m>0
Chứng minh rằng nếu a<b thì
\(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
2.P=\(\frac{3-a}{a+10}\)
a, để P>0
TH1 3-a>0 và a+10 >0
=> a<3 và a> -10
=> -10<a<3
TH2 3-a<0 và a+10<0
=> a>3 và a<-10(vô lý)
Vậy để P>0 thì -10<a<3
b.để P<0
TH1 3-a<0 và a+10>0
a>3 và a>-10
Vậy a>3
TH2 3-a>0 và a+10<0
=> a<3 và a<-10
Vậy a<-10
vậy để P<0 thì a >3 hoặc a<-10
bài 3.
a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)
Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)
b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)
Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)
c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)
Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)
bài 4.
\(\frac{a}{m}\)=\(\frac{2a}{2m}\)=\(\frac{a+a}{2m}\); \(\frac{a+b}{2m}\)
Vì ta có a<b=> a+a<a+b
=> \(\frac{a+a}{2m}\)<\(\frac{a+b}{2m}\)=>\(\frac{a}{m}\)<\(\frac{a+b}{2m}\)(1)
\(\frac{b}{m}\)=\(\frac{2b}{2m}\)=\(\frac{b+b}{2m}\); \(\frac{a+b}{2m}\)
Vì a<b=>a+b<b+b
=>\(\frac{a+b}{2m}\)<\(\frac{b+b}{2m}\)=>\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)(2)
từ(1) và(2) ta có \(\frac{a}{m}\)<\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)
bn có thể giải thích gjup mk bài 2 tại sao lại có -10 dc ko Mai Linh
nếu bn ko rảh thj thôi cx dc, ko s cả