2. Tìm 3 số biết.
a) \(\frac{x}{y}=\frac{y}{8}=\frac{z}{9}\) và x + y + z = 72
b) x : y : z = 5 : 4 : 3 và x +y - z = 18
c) \(\frac{a}{5}=\frac{b}{4}=\frac{c}{7}\) và a + 2b +c = 10
d) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a = 15
e) \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và a + b = 10
f) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2a + b - c = -12
g) \(\frac{a}{5}=\frac{b}{6}=\frac{c}{2}\) và 2a + b - 4c = 24
h) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{-7}\) và abc = 366
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16