Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\) suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\) , do đó x < z < y
tương tự nếu x > y thì x > z > y
Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\) suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\) , do đó x < z < y
tương tự nếu x > y thì x > z > y
Cho các số hữu tỉ x=\(\frac{a}{b}\), b=\(\frac{c}{d}\), z=\(\frac{m}{n}\)
Biết ad-bc=1
cn-dm=1 và b,d,n > hoặc bằng 0
a) Hãy so sánh các số x,y,z
b) So sánh y và t biết:
t= \(\frac{a+m}{b+n}\) (với b,n khác 0)
Cho các số hữu tỉ x, y, z.
x=a/b ; y=c/d ; z=m/n trong đó m=(a+c)/2 ; n=(b+d)/2.
Cho biết x khác y, hãy so sánh x với z; y với z.
a/ Cho x,y,z khác 0 thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
b/ Cho a,b,c,d khác 0. Tính
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\) biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+=d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho các số hữu tỉ x, y, z biết x = a/b; y = c/d ; z = m/n trong đó m= a+c/2 , n=b+b/2 ;x khác y. So sánh x và z ; y và z
cho các số hữu tỉ x=a/b, y=c/d, z=m/n
biết ad-bc=1, cn-dm=1 và b,d.n>0
a) Hãy so sánh các số x, y, z
b) So sánh y với t biết t= a+m/b+n
2. Cho \(P=\frac{3-a}{a+10}\) ( a thuộc Z)
a/ Tìm a để P>0
b/ Tìm a để P<0
3. Tìm các số hữu tỉ x, y, z biết:
a/ \(\frac{7}{3}< x< \frac{17}{2}\)
b/ \(\frac{-3}{2}< y< 2\)
c/ \(\frac{-17}{3}< z< \frac{-3}{2}\)
4/ Cho a, b, m thuộc Z; m>0
Chứng minh rằng nếu a<b thì
\(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)
Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)
Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất
Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:
\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)
Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)
Bài 5, Tìm giá trị x,y,z để biểu thức
\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất
Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)
Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)
Cho a, b, c, d là các số thực khác 0. Tìm các số thực x, y, z khác 0 thỏa mãn:
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
Bạn nào biết thì giải giùm mình nhé ! Giải và trình bày cẩn thận luôn nhé !
Mình xin cảm ơn nhiều !!!
a)Giả sử\(x=\frac{a}{m},y=\frac{b}{m}\) (a,b,m thuộc Z,m>0) và x < y. Hãy chứng tỏ rằng nếu chọn\(z=\frac{a+b}{m}\) thì ta có x<z<y
Hướng dẫn sử dụng tính chất : Nếu a,b,c thuộc Z và a<b thì a+c<b+c.
b)Hãy chọn ba phân số nằm xen giữa các phân số \(\frac{1}{2}\) và \(\frac{5}{2}\)