Theo đề ra, ta có:
\(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}=\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}\)
*) Nếu \(\frac{a}{b}>\frac{c}{d}\) \(=>ad>bc=>ad+cd>bc+cd=>d\left(a+c\right)>c\left(b+d\right)=>\frac{a+c}{b+d}>\frac{c}{d}\)
và \(ad+ab>bc+ab=>a\left(d+b\right)>b\left(a+c\right)=>\frac{a}{b}>\frac{a+c}{b+d}\) => \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}=>x>z>y\)
*) Nếu \(\frac{a}{b}< \frac{c}{d}\) thì tương tự và được \(x< z< y\)