tim:1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=996/997
Tim x biết 1\1x2+1\2*3 +1\3*4+----+1\**(×+1)=996\997
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{996}{997}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{996}{997}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{997}\)
\(\Rightarrow x+1=997\)
\(\Rightarrow x=996\)
\(\Leftrightarrow\)1-1/2+1/2-1/3+1/3-1/4+..+1/x-1/(x+1)=996/997
\(\Leftrightarrow\)1-1/(x+1)=996/997
\(\Leftrightarrow\)\(\frac{x}{x+1}\)\(=\frac{996}{997}\)
\(\Leftrightarrow x=996\)
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{996}{997}\)
Xét dạng tổng quát : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{ax\left(a+1\right)}-\frac{a}{ax\left(a+1\right)}=\frac{a+1-a}{ax\left(a+1\right)}=\frac{1}{ax\left(a+1\right)}\)
Do đó \(\frac{1}{ax\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng \(\frac{1}{1x2}=\frac{1}{1x\left(1+1\right)}=\frac{1}{1}-\frac{1}{1+1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2x3}=\frac{1}{2x\left(2+1\right)}=\frac{1}{2}-\frac{1}{2+1}=\frac{1}{2}-\frac{1}{3}\)
.......
\(\frac{1}{Xx\left(X+1\right)}=\frac{1}{X}-\frac{1}{X+1}\)
Do đó \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+1}\)
\(=\frac{1}{1}-\frac{1}{X+1}=1-\frac{1}{X+1}=\frac{X+1}{X+1}-\frac{1}{X+1}=\frac{X}{X+1}\)
Vì \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{996}{997}\)
nên \(\frac{X}{X+1}=\frac{996}{997}\)
\(\frac{X}{X+1}=\frac{996}{996+1}\)
Vậy X=996
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x + 1 = 996/997
Tìm x
X + 1 / 1000 + x + 2 /999 + x + 3/998 + x + 4 /997 + x + 5/ 996 + x + 6/995 +6 =0
Bài này đề bài là giải phương trình hở bạn :
Gỉai
Phương trình đẫ cho trên đề bài tương đương với :
\(\frac{x+1}{1000}+1+\frac{x+2}{999}+1+\frac{x+3}{998}+1+\frac{x+4}{997}+1+\frac{x+5}{996}+1+\frac{x+6}{995}+1=0\)
\(\Leftrightarrow\frac{x+1001}{1000}+\frac{x+1001}{999}+\frac{x+1001}{998}+\frac{x+1001}{997}+\frac{x+1001}{996}+\frac{x+1001}{995}=0\)
\(\Leftrightarrow\left(x+1001\right)\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{996}+\frac{1}{995}\right)=0\)
\(\Leftrightarrow x=-1001\)
Vậy nghiêm của phương trình là : \(x=-1001\)
Chúc bạn học tốt !!!
hoang viet nhat
Làm thiếu giải thích
\(\dfrac{1}{\begin{matrix}1\times&2\end{matrix}}+\dfrac{1}{\begin{matrix}2\times&3\end{matrix}}+\dfrac{1}{\begin{matrix}3\times&4\end{matrix}}+...........+\dfrac{1}{x\times\left(x+1\right)}=\dfrac{996}{997}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{996}{997}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)= \(\dfrac{996}{997}\) \(1-\dfrac{1}{x+1}\) = \(\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) = \(1-\dfrac{996}{997}\)
\(\dfrac{1}{x+1}\) =\(\dfrac{1}{997}\)
\(\Rightarrow\) x + 1 = 997
x = 997 - 1
x = 996
Vậy x = 996
CMR: 1-1/2+1/3-1/4+...+1/1990=1/996+1/997+...+1/1990
CMR: 1-1/2+1/3-1/4+.....-1/1990=1/996+1/997+.....+1/1990
1,CMR:1-1/2-1/3-1/4-...-1/1990=1/996 1/997 ... 1/1990
CMR: (1-1/2+1/3-1/4+1/5-...-1/1990)=(1/996+1/997+...+1/1990)
CMR:1- 1/2 + 1/3 - 1/4 + ... + 1/1989 - 1/1990 = 1/996 + 1/997 + ...1/1990