Tính tổng P= \(\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{6.7}+....+\frac{1}{198.101}\)
Tính tổng
\(\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+.....+\frac{1}{198.101}\)
tính tổng :
$A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}$
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
Tính tổng:
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
Ta thấy : thừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4
Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)
4A= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101.4}=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2\times\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2\times\frac{1}{4}\times\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}\times\frac{50}{101}\)
\(A=\frac{25}{101}\)
1/2A=1/2*3*2+1/6*5*2+1/10*7*2+...+1/198*101*2
1/2A=1/2*6+1/6*10+1/10*14+...+1/198*202
4/2A=4/2*6+4/6*10+4/10*14+...+4/198*202
2A=1/2-1/6+1/6-1/10+1/10-1/14+...+1/198-1/202
2A=1/2-1/202
2A=100/202
A=50/202
tính tổng :
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=2.\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)
\(A=2.\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{202}\right)\)
\(A=\frac{1}{2}.\frac{50}{201}\)
\(A=\frac{25}{101}\)
Như bạn kia là rất đúng
tính \(P=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
Tính giá trị của iểu thức sau;
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+.....+\frac{1}{198.101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)
\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(4A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101.4}=\frac{25}{101}\)
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(4A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(4A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}:4=\frac{25}{101}\)
Tính giá trị biểu thức sau:
\(B=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
tất cả rút \(\frac{1}{2}\) ra ngoài ta có :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
đến đây thì dễ rồi tự làm tiếp đi , ko hiểu thì hỏi nha
cái này bn đặt làm hiệu sẽ ra ngay thôi!
tính nhanh
\(\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+\frac{1}{14.9}+...+\frac{1}{198.101}\)
Tính tổng P\(=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
Các pn giúp mik nka!!!Ai làm nhanh nhất mik TICK cho!!!!!Nhanh lên mik dag cần gấp!!!
1/2 . P = 1/2.6 + 1/6.10 + 1/10.14 + ... + 1/198.202
4.1/2. P= 4/2.6 + 4/6.10 + 4/10.14 + ... + 4/198.202
2P=1/2-1/6+1/6-1/10+1/10-1/14+...+1/198-1/202
2P=1/2-1/202=50/101
P=50/101:2=50/101.1/2=25/101