Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hiền Trần

Tính tổng: 

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

Quốc Đạt
23 tháng 5 2016 lúc 9:12

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{14.9}+...+\frac{1}{198.101}\)

\(A=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)

Ta thấy : thừa số thứ nhất ở mẫu của phân số liền sau = thừa số thứ nhất của phân số liền trước + 4

Thừa số thứ hai ở mẫu của phân số liền sau = thừa số thứ hai của phân số liền trước + 2 

\(4A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

\(4A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{101-99}{99.101}\)

4A= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

\(A=\frac{100}{101.4}=\frac{25}{101}\)

bảo nam trần
23 tháng 5 2016 lúc 9:12

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(A=2\times\left(\frac{1}{2.6}+\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{198.202}\right)\)

\(A=2\times\frac{1}{4}\times\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{198}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{202}\right)\)

\(A=\frac{1}{2}\times\frac{50}{101}\)

\(A=\frac{25}{101}\)

Phạm Nguyễn Tất Đạt
23 tháng 5 2016 lúc 9:13

1/2A=1/2*3*2+1/6*5*2+1/10*7*2+...+1/198*101*2

1/2A=1/2*6+1/6*10+1/10*14+...+1/198*202

4/2A=4/2*6+4/6*10+4/10*14+...+4/198*202

2A=1/2-1/6+1/6-1/10+1/10-1/14+...+1/198-1/202

2A=1/2-1/202

2A=100/202

A=50/202

 

 

 

 

 

 

 

 

 

 

 

 


Các câu hỏi tương tự
Hồ Quang Phước
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
hi
Xem chi tiết
Bùi Tiến Hiếu
Xem chi tiết
Nguyễn An Minh
Xem chi tiết
Ngô Châu Bảo Oanh
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
agelina jolie
Xem chi tiết
Trần Hương Giang
Xem chi tiết