cho Tam giác cân ABC (AB=ÁC).BD và CE là 2 phân giác của tam giác
a/CM: BD=CE b/ XÁc định dạng của tam giác ADE c/CM: DE//BC
Giúp em đi !!!
Bài 1: Cho tam giác cân ABC (AB=AC). BD và CE là hai phân giác của gam giác. a)Chứng minh: BD=CE b) Xác định dạng của tam giác ADE c) Chứng minh DE//BC
a: Xét ΔABD và ΔACE có
góc ABD=góc ACE
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>BD=CE
b: Xét ΔADE có AD=AE
nên ΔADE cân tại A
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
1.cho tam giác cân ABC (AB=AC).BD và CE là 2 phân giác của tam giác.
a)Chứng minh: BD=CE
b) Xác định dạng của tam giác ADE
c)Chứng minh DE//BC
Bài 1: Cho tam giác cân ABC (AB=AC). BD và CE là hai phân giác của gam giác.
a)Chứng minh: BD=CE
b) Xác định dạng của tam giác ADE
c) Chứng minh DE//BC
Bạn tự vẽ hình nhé!
a, Ta có: BD là pg của góc ABC => góc ABD=1/2.ABC
Tương tự góc ACE=1/2.ACB
Mà ABC=ACB => ABD=ACE
Xét tg ABD và ACE có:
AB=AC (gt)
Góc A chung
Góc ABD=ACE (cmt)
=> tg ABD=ACE (g.c.g) => BD=CE
b, Theo câu a, tg ABD=ACE => AE=AD => tg ADE cân tại A.
c, Tg ABC cân tại A=> góc ABC=ACB= (180o-A):2
Tg ADE cân tại A=> góc ADE=AED= (180o-A):2
=> góc AED=ABC
Mà hai góc trên đồng vị => DE//BC
Chúc bạn học tốt! (Tính mk hay sai nên bn kiểm tra giùm mk nhé!)
Giúp mình nha mọi người mai mình nộp rồi
cho tam giác ABC cân tại A kẻ BD vuông góc AC tại D, CE vuông góc AB tại E, BD giao CE tại O
a) cm tam giác EAC=tam giác DAB
b) Định dạng tam giác ADE
c) OE=OD
d) Cm AO là trung trực BC, DE
cho tam giác ABC có AB=6cm, BC=10cm, AC=8cm
a, CM tam giác ABC vuông
b, Vẽ đường cao AH của tam giác ABC và phân giác AD của tam giác AHC. CM tam giác ABD là tam giác cân tại B
c, Vẽ phân giác AE của tam giác ABH. CM BD^2+CH^2=CE^2+BH^2
d, CM giao điểm của các đường trung trực của tam giác ADE cách đều 3 cạnh của tam giác ABC
Cho tam giác cân ABC. BD vá CE là hai phân giác của tam giác
a, Chứng minh BD\(=\)CE
b, Xác định dạng của \(\Delta\)ADE
c, Chứng minh DE song song BC
a) Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (do ΔABCΔABC cân đỉnh A)
ˆABD=ˆACEABD^=ACE^ (cùng +45o+45o=180^o)
BD=CEBD=CE (giả thiết)
⇒ΔABD=ΔACE⇒ΔABD=ΔACE (c.g.c)
⇒AD=AE⇒AD=AE (hai cạnh tương ứng)
⇒ΔADE⇒ΔADE cân đỉnh A
b) Ta có: BD+BM=CE+CM⇒DM=EMBD+BM=CE+CM⇒DM=EM
Xét ΔAMDΔAMD và ΔAMEΔAME có:
AD=AEAD=AE (cmt)
AMAM chung
DM=EMDM=EM (cmt)
⇒ΔAMD=ΔAME⇒ΔAMD=ΔAME (c.c.c)
⇒ˆMAD=ˆMAE⇒MAD^=MAE^ (hai góc tương ứng)
⇒AM⇒AM là phân giác ˆDAEDAE^ (đpcm)
Ta có ΔAMD=ΔAME⇒ˆAMD=ˆAMEΔAMD=ΔAME⇒AMD^=AME^
Mà ˆAMD+ˆAME=180oAMD^+AME^=180o
Cho tam giác ABC cân tại A. Trên tia đối của AB và AC, kẻ D và E sao cho BD = CE a) chứng minh tam giác ADE cân, DE//BC b) Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC. Cm DM=EN c) chứng minh tam giác AMN là tam giác cân ( giải hộ mik nhanh nha)
a, Ta có : AD = AB + BD ; AE = AC + CE
mà AB = AC (gt); BD = CE (gt)
=> AD = AE
Vậy tam giác ADE cân tại A
Ta có : \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)do AB = AC; AD = AE(cmt)
=> DE // BC ( Ta lét đảo )
b, Vì ^ABC = ^MDB ( đối đỉnh )
^ACB = ^NCE ( đối đỉnh )
mà ^ABC = ^ACB ( tam giác ABC cân tại A )
=> ^MDB = ^NCE
Xét tam giác DMB và tam giác ENC có :
BD = EC (cmt)
^MDB = ^NCE ( cmt )
Vậy tam giác DMB = tam giác ENC ( ch - gn )
=> DM = EN ( 2 cạnh tương ứng )
=> BM = NC ( 2 cạnh tương ứng )
c, Ta có : ^ABM = ^MBC - ^ABC
^ACN = ^NCM = ^ACB
=> ^ABM = ^ACN
Xét tam giác ABM và tam giác ACN có :
AB = AC (gt)
^ABM = ^ACN (cmt)
BM = CN (cmt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> ^AMB = ^ANC ( 2 góc tương ứng )
Xét tam giác AMN có : ^AMB = ^ANC (cmt)
Vậy tam giác AMN cân tại A
Bạn vẽ hình giúp mình nha
a. Tam giác ABC cân tại A nên AB=AC
Ta có: AE=AC+CE, AD=AB+BD
Mà AC=AB, CE=BD
\(\Rightarrow AE=AD\) \(\Rightarrow\Delta ADE\) cân tại A
Xét \(\Delta ADE\) có: \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)
Áp dụng định lí Ta-let đảo \(\Rightarrow BC//DE\) (đpcm)
Xét \(\Delta BDM\) vuông tại M và \(\Delta CEN\) vuông tại N có:
\(\left\{{}\begin{matrix}BD=CE\\\widehat{MBD}=\widehat{NEC}\left(cùng.bằng.\widehat{ABC}\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\Delta BDM\)=\(\Delta CEN\) \(\Rightarrow\)DM=EN (đpcm)
Kẻ \(AH\perp BC\) \(\left(H\in BC\right)\)
Ta có \(\Delta ABC\) cân tại A nên AH vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow BH=CH\)
Mà MB=CN (\(\Delta BDM\)=\(\Delta CEN\)) \(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\) cân tại A
Cho tam giac ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE a) Chứng minh tam giác ADE là tam giác cân b)Kẻ BH vuông góc với AD Kẻ CK vuông góc AE Chứng minh rằng BH=CK,AH=AK c)Gọi I là giao điểm của BH và CK.TAm giác IBC là tam giác gì? Vì saoe) Khi góc BAC =60độ và BD=CE=BC hãy tính số đo các góc của tam giác ADE và xác định dạng tam giác IBC
Bạn tự vẽ hình nha!
a.
Ta có:
B1 + B2 = 180C1 + C2 = 180mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I