Theo dõi page Facebook tại: Cuộc thi Trí tuệ VICE | Facebook
(3-4 điểm thưởng/câu)
Theo dõi ngay page Facebook của cuộc thi nha, hãy giúp các admin đạt 10.000 like! Cuộc thi Trí tuệ VICE | Facebook
(3-4 điểm thưởng/câu) Theo thứ tự, các câu được đánh số từ 1 đến 5.
2. \(\dfrac{R1}{R2}=\dfrac{l1}{l2}=\dfrac{42}{l2}=>R1=\dfrac{42.R2}{l2}\)
\(U2=5U1=>I2.R2=5I1.R1\)
\(< =>R2=5R1=>R2=\dfrac{5.42.R2}{l2}=>l2=210m\)
1,
\(R1=R2\)(R1: điện trở đồng , R2: điện trở nhôm)
\(=>\dfrac{p1.l1}{S1}=\dfrac{p2.l2}{S2}\) mà chiều dài ko đổi
\(=>\dfrac{p1}{S1}=\dfrac{p2}{S2}=>\)\(S2=\dfrac{S1.p2}{p1}=\dfrac{0,0002.2,8.10^{-8}}{1,7.10^{-8}}\approx3,3.10^{-4}m^2\)
lại có \(V=S.h=>\dfrac{m}{D}=S.h=>m=S.h.D\)
\(=>\dfrac{m1}{m2}=\dfrac{S1.D1.h}{S2.D2h}=\dfrac{8900.0,0002}{2700.3,3.10^{-4}}=2\)(lần)
\(=>m1=2m2\)\(< =>m2=\dfrac{1}{2}m1\)=>khối lượng dây giảm 2 lần
Like page Facebook của cuộc thi để theo dõi những sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
Đề của một bạn theo dõi page gửi về.
Bài 2.
Tìm Min.
\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
Đẳng thức xảy ra khi $x=y=z=1.$
Tìm Max.
Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)
Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)
Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)
Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))
Đề bất đẳng thức đơn giản v:vv
3c) Ta sẽ chứng minh
\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)
Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)
Đúng vì theo AM-GM ta có:
\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)
Xong.
Câu phương trình ở căn thức thứ ba phải là $17x^2-48x+36$ chứ nhỉ. Và bài này vô nghiệm.
Like page Facebook của cuộc thi để theo dõi những sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
[Toán.C88 _ 16.2.2021]
Xét a,b,c là các số dương thỏa mãn \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}=6\). Tìm min của \(P=\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\).
[Toán.C89 _ 16.2.2021]
Cho x,y dương thỏa mãn \(x^3+y^3+6xy\le8.\) Tìm min \(Q=\dfrac{1}{x}+\dfrac{1}{y}\).
[Toán.C90 _ 16.2.2021]
[Toán.C91 _ 16.2.2021]
Toán C89 :
Ta có : \(x^3+y^3+6xy\le8\)
\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)
\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)
\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)
Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)
\(=x^2+y^2-xy+2.\left(x+y\right)+4\)
\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)
Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)
Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy Min \(Q=2\) khi \(x=y=1\)
Toán C88 :
Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :
\(\left(a+1\right)+4\ge4\sqrt{a+1}\)
\(\left(b+1\right)+4\ge4\sqrt{b+1}\)
\(\left(c+1\right)+4\ge4\sqrt{c+1}\)
Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)
\(\Leftrightarrow a+b+c\ge9\)
Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)
Chứng minh tương tự ta có :
\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)
Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=3\)
Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)
c89
ta có:\(x^3+y^3+6xy\le8\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-2x-2y-xy+4\right)\le0\left(1\right)\)
áp dụng bất đẳng thức AM-GM:
\(x^2+y^2\ge2xy\\ x^2+4\ge4x\\ \)
\(y^2+4\ge4y\)
=>\(x^2+y^2-xy-2x-2y+4\ge0\)(2)
\(\left(1\right)\left(2\right)\Rightarrow x+y\le2\)
ta có:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)mà \(x+y\le2\)=>\(\dfrac{4}{x+y}\ge2\)
hay Q\(\ge2\) Dấu= xảy ra khi và chỉ khi x=y=1
Like page Facebook của cuộc thi để theo dõi những sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
[Toán.C92 _ 17.2.2021]
[Toán.C93 _ 17.2.2021]
[Toán.C94 _ 17.2.2021]
[Toán.C95 _ 17.2.2021]
Tìm tất cả các cặp (x,y) nguyên dương thỏa mãn: \(12^x+5^x=y^2\).
[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.
Xem chi tiết tại tthnew's blog: 1721
Like page Facebook của cuộc thi để theo dõi những sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
[Toán.C96 _ 17.2.2021]
[Toán.C97 _ 17.2.2021]
[Toán.C98 _ 17.2.2021]
Đặt:
x = b + c; y = c + a; z = a + b
=> 2a = y + z - x;
2b = x + z - y;
2c = x + y - z.
Đặt vế trái đề bài là (1),
(1) sẽ trở thành:
½[(y + z - x)/x + 25(x + z - y)/y + 4(x + y - z)/z]
= ½(y/x + 25x/y + z/x + 4x/z + 25z/y + 4y/z)
Áp dụng BĐT CÔSI ta có:
y/x + 25x/y ≥ 2\(\sqrt{ }\)(25xy/xy) = 10
z/x + 4x/z ≥ 2\(\sqrt{ }\)(4xz/xz) = 4
25z/y + 4y/z ≥ 2\(\sqrt{ }\)(100yz/yz) = 20
(1) trở thành BĐT:
(1) ≥ ½(10 + 4 + 20 - 30) = 2
Đẳng thức xảy ra khi:
y/x = 25x/y; z/x = 4x/z; 25z/y = 4y/z
=> 25x² = y²; 4x² = z²; 25z² = 4y²
=> y/x = 5; z/x = 2; z/y = 2/5
=> x = 2; y = 10; z = 4
=> b + c = 2; c + a = 10; a + b = 4
=> c = 2 - b; a = 4 - b
=> (2 - b) + (4 - b) = 10 => b = -2 < 0 (không thỏa mãn)
Vậy đẳng thức không xảy ra và (1) > 2
Like và share page Facebook của cuộc thi để theo dõi những ưu đãi, sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
Đề số 3 trong bộ đề Toán chuyên, gửi tới các bạn. Trả lời và bình luận để được các thầy cô đánh giá điểm nhé :>
Ngoài ra, mình có một câu bất đẳng thức phụ ngoài đề.
Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}+\dfrac{\left(a-b\right)^2}{a+b+c}\).
Bài I
a ĐKXĐ : \(\left\{{}\begin{matrix}2-x\ge0\\2-x^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\-\sqrt{2}\le x\le\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\)
\(\Rightarrow\left(2-x^2\right)=\left(\sqrt{2-x}\right)^2\Leftrightarrow x^4-4x^2+4=2-x\Leftrightarrow x^4-4x^2+x+2=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-3x^2+3x-2x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\left(1\right)\\x^3+x^2-3x-2=0\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow x=1\left(TM\right)\)
Từ (2) \(\Rightarrow x^3+2x^2-x^2-2x-x-2=0\Leftrightarrow\left(x+2\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x-1=0\end{matrix}\right.\)
*Nếu x+2=0 \(\Leftrightarrow x=-2\left(L\right)\)
*Nếu \(x^2-x-1=0\Leftrightarrow x^2-x+\dfrac{1}{4}=\dfrac{5}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{1}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\left(L\right)\\x=\dfrac{-\sqrt{5}+1}{2}\left(TM\right)\end{matrix}\right.\)
Vậy...
Ảnh bị up thiếu, đề còn thiếu đây nhé
Bài II
1 Giả sử a+b+c+d là số nguyên tố
\(\Rightarrow a\left(a+b+c+d\right)=a^2+ab+ac+ad=a^2+ab+bd+ad\) (do ac=bd) =a(a+b)+d(a+b)=(a+b)(a+d) \(\Rightarrow a\left(a+b+c+d\right)⋮\left(a+b\right)\left(a+d\right)\) Mà a<a+b,a<a+d do a,b,c,d \(\in Z^+\) \(\Rightarrow a+b+c+d⋮\left(a+b\right)\left(a+d\right)\) Vô lí \(\Rightarrow\) giả sử sai
Vậy a+b+c+d là hợp số
Like và share page Facebook của cuộc thi để theo dõi những ưu đãi, sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
Đề số 2 trong bộ đề Toán chuyên, gửi tới các bạn.
I.1.
ĐK: \(x\in R\)
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow2x^2+6x+2=2\left(x+3\right)\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+1+x^2+6x+9-2\left(x+3\right)\sqrt{x^2+1}=8\)
\(\Leftrightarrow\left(x+3-\sqrt{x^2+1}\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3-\sqrt{x^2+1}=2\sqrt{2}\\x+3-\sqrt{x^2+1}=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+3-2\sqrt{2}\left(1\right)\\\sqrt{x^2+1}=x+3+2\sqrt{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x^2+1}=x+3-2\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3-2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3-2\sqrt{2}\right)x+17-12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\sqrt{2}-3\\2\left(3-2\sqrt{2}\right)x=12\sqrt{2}-16\end{matrix}\right.\)
\(\Leftrightarrow x=2\sqrt{2}\)
\(\left(2\right)\Leftrightarrow\sqrt{x^2+1}=x+3+2\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3+2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3+2\sqrt{2}\right)x+17+12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3-2\sqrt{2}\\2\left(3+2\sqrt{2}\right)x=-16-12\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow x=-2\sqrt{2}\)
Vậy phương trình có nghiệm \(x=\pm2\sqrt{2}\)
Câu 1 :
Ta có : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
- Đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)
PT TT : \(a^2+3x=a\left(x+3\right)\)
\(\Leftrightarrow a^2-ax-3a+3x=0\)
\(\Leftrightarrow a^2-a\left(x+3\right)+3x=0\)
Có : \(\Delta=b^2-4ac=\left(a+3\right)^2-4.3a=a^2+6a+9-12a\)
\(=a^2-6a+9=\left(a-3\right)^2\ge0\forall a\)
TH1 : \(\Delta=0\Rightarrow a=3\left(TM\right)\)
\(\Rightarrow\sqrt{x^2+1}=3\)
\(\Rightarrow x=\pm2\sqrt{2}\)
TH2 : \(\Delta>0\)
=> Pt có 2 nghiệm phân biệt :\(\left\{{}\begin{matrix}a=\dfrac{x+3+\sqrt{\left(x-3\right)^2}}{2}\\a=\dfrac{x+3-\sqrt{\left(x-3\right)^2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+\left|x-3\right|}{2}\\\sqrt{x^2+1}=\dfrac{x+3-\left|x-3\right|}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=\dfrac{2x}{2}=x\\\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\\\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+1=9\\x^2+1=x^2\end{matrix}\right.\)
\(\Rightarrow x=\pm2\sqrt{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\pm2\sqrt{2}\right\}\)
I.2
Đặt \(x+y=a;xy=b\)
\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3-3ab+a=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3-6+a=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3+a-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\\left(a-2\right)\left(a^2+2a+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a=2\left(\text{vì }a^2+2a+5>0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)
\(\Leftrightarrow x=y=1\)
Vậy ...
Like page Facebook của cuộc thi để theo dõi những sự kiện tiếp theo nha ^^
Cuộc thi Trí tuệ VICE | Facebook
Muốn đề xuất câu hỏi? Các bạn hãy liên hệ trực tiếp qua Facebook nha :>
-------------------------------------------------
Các bạn thử làm một đề trước năm mới nha :>
Câu III ý 2)
Ta có:
\(P^2\le\left(a^2+b^2\right)\left[3b\left(a+2b\right)+3a\left(b+2a\right)\right]=2\left[6\left(a^2+b^2\right)+3\cdot2ab\right]\)
\(\le2\left[6\cdot2+3\left(a^2+b^2\right)\right]\le36\Rightarrow P\le6.\)
Đẳng thức xảy ra khi $a=b=1.$
Vậy...
Bài V có phải là 3; 3; 4 không anh Quoc Tran Anh Le CTV?
Bài I
1 ĐKXĐ x\(\ge-2\)
\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\) ( Do \(\sqrt{x+5}+\sqrt{x+2}>0\) ≠ 0 nên có thể nhân cả hai vế )\(\Leftrightarrow\left(x+5-x-2\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\) \(\Leftrightarrow1-\sqrt{x+5}+\sqrt{\left(x+5\right)\left(x+2\right)}-\sqrt{x+2}=0\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(1-\sqrt{x+2}\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(L\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy.....
2
Xem bài đăng Facebook và share bài tại: Cuộc thi Trí tuệ VICE - Bài viết | Facebook
(3-4 điểm thưởng event/bài)
em comment đầu và muốn nói :''em không bt lm ''