Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Sad boy
31 tháng 7 2021 lúc 17:07

không coá văn nhỉ :D ? =((

missing you =
31 tháng 7 2021 lúc 18:27

2. \(\dfrac{R1}{R2}=\dfrac{l1}{l2}=\dfrac{42}{l2}=>R1=\dfrac{42.R2}{l2}\)

\(U2=5U1=>I2.R2=5I1.R1\)

\(< =>R2=5R1=>R2=\dfrac{5.42.R2}{l2}=>l2=210m\)

missing you =
31 tháng 7 2021 lúc 19:20

1,

\(R1=R2\)(R1: điện trở đồng , R2: điện trở nhôm)

\(=>\dfrac{p1.l1}{S1}=\dfrac{p2.l2}{S2}\) mà chiều dài ko đổi

\(=>\dfrac{p1}{S1}=\dfrac{p2}{S2}=>\)\(S2=\dfrac{S1.p2}{p1}=\dfrac{0,0002.2,8.10^{-8}}{1,7.10^{-8}}\approx3,3.10^{-4}m^2\)

lại có \(V=S.h=>\dfrac{m}{D}=S.h=>m=S.h.D\)

\(=>\dfrac{m1}{m2}=\dfrac{S1.D1.h}{S2.D2h}=\dfrac{8900.0,0002}{2700.3,3.10^{-4}}=2\)(lần)

\(=>m1=2m2\)\(< =>m2=\dfrac{1}{2}m1\)=>khối lượng dây giảm 2 lần

 

Quoc Tran Anh Le
Xem chi tiết
tthnew
9 tháng 2 2021 lúc 15:23

Bài 2.

Tìm Min.

\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

Đẳng thức xảy ra khi $x=y=z=1.$

Tìm Max.

Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)

Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)

Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)

Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))

tthnew
9 tháng 2 2021 lúc 15:16

Đề bất đẳng thức đơn giản v:vv

3c) Ta sẽ chứng minh 

\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)

Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)

Đúng vì theo AM-GM ta có:

\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)

Xong.

tthnew
9 tháng 2 2021 lúc 15:32

Câu phương trình ở căn thức thứ ba phải là $17x^2-48x+36$ chứ nhỉ. Và bài này vô nghiệm.

Quoc Tran Anh Le
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
16 tháng 2 2021 lúc 20:49

Toán C89 :

Ta có : \(x^3+y^3+6xy\le8\)

\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)

\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)

Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)

\(=x^2+y^2-xy+2.\left(x+y\right)+4\)

\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)

Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)

Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy Min \(Q=2\) khi \(x=y=1\)

✿✿❑ĐạT̐®ŋɢย❐✿✿
16 tháng 2 2021 lúc 20:56

Toán C88 :

Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :

\(\left(a+1\right)+4\ge4\sqrt{a+1}\)

\(\left(b+1\right)+4\ge4\sqrt{b+1}\)

\(\left(c+1\right)+4\ge4\sqrt{c+1}\)

Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)

\(\Leftrightarrow a+b+c\ge9\)

Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)

Chứng minh tương tự ta có :

\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)

Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)

Phạm Lan Hương
16 tháng 2 2021 lúc 21:16

c89

ta có:\(x^3+y^3+6xy\le8\Leftrightarrow\left(x+y-2\right)\left(x^2+y^2-2x-2y-xy+4\right)\le0\left(1\right)\)

áp dụng bất đẳng thức AM-GM:

\(x^2+y^2\ge2xy\\ x^2+4\ge4x\\ \)

\(y^2+4\ge4y\)

=>\(x^2+y^2-xy-2x-2y+4\ge0\)(2)

\(\left(1\right)\left(2\right)\Rightarrow x+y\le2\)

ta có:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)mà \(x+y\le2\)=>\(\dfrac{4}{x+y}\ge2\)

hay Q\(\ge2\) Dấu= xảy ra khi và chỉ khi x=y=1

 

Quoc Tran Anh Le
Xem chi tiết
tthnew
17 tháng 2 2021 lúc 19:38

[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.

Xem chi tiết tại tthnew's blog: 1721

 

Quoc Tran Anh Le
Xem chi tiết
Hồng Phúc
17 tháng 2 2021 lúc 18:18

C96 trùng C94 rồi

Dương Ngọc Nguyễn
18 tháng 2 2021 lúc 0:22

Đặt:

x = b + c; y = c + a; z = a + b

=> 2a = y + z - x;

2b = x + z - y;

2c = x + y - z.

Đặt vế trái đề bài là (1),

(1) sẽ trở thành:

½[(y + z - x)/x + 25(x + z - y)/y + 4(x + y - z)/z]

= ½(y/x + 25x/y    +    z/x + 4x/z    +    25z/y + 4y/z)

Áp dụng BĐT CÔSI ta có:

y/x + 25x/y ≥ 2\(\sqrt{ }\)(25xy/xy) = 10

z/x + 4x/z ≥ 2\(\sqrt{ }\)(4xz/xz) = 4

25z/y + 4y/z ≥ 2\(\sqrt{ }\)(100yz/yz) = 20

(1) trở thành BĐT:

(1) ≥ ½(10 + 4 + 20 - 30) = 2

Đẳng thức xảy ra khi:

y/x = 25x/y; z/x = 4x/z; 25z/y = 4y/z

=> 25x² = y²; 4x² = z²; 25z² = 4y²

=> y/x = 5; z/x = 2; z/y = 2/5

=> x = 2; y = 10; z = 4

=> b + c = 2; c + a = 10; a + b = 4

=> c = 2 - b; a = 4 - b

=> (2 - b) + (4 - b) = 10 => b = -2 < 0 (không thỏa mãn)

Vậy đẳng thức không xảy ra và (1) > 2

32 23
18 tháng 2 2021 lúc 20:38

c96 ad xem lại thử xem hình như sai đề

Quoc Tran Anh Le
Xem chi tiết
Nguyễn Trọng Chiến
8 tháng 2 2021 lúc 14:26

Bài I

a ĐKXĐ : \(\left\{{}\begin{matrix}2-x\ge0\\2-x^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\-\sqrt{2}\le x\le\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\) 

\(\Rightarrow\left(2-x^2\right)=\left(\sqrt{2-x}\right)^2\Leftrightarrow x^4-4x^2+4=2-x\Leftrightarrow x^4-4x^2+x+2=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-3x^2+3x-2x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\left(1\right)\\x^3+x^2-3x-2=0\left(2\right)\end{matrix}\right.\) 

Từ (1) \(\Rightarrow x=1\left(TM\right)\) 

Từ (2) \(\Rightarrow x^3+2x^2-x^2-2x-x-2=0\Leftrightarrow\left(x+2\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x-1=0\end{matrix}\right.\) 

*Nếu x+2=0 \(\Leftrightarrow x=-2\left(L\right)\)

*Nếu \(x^2-x-1=0\Leftrightarrow x^2-x+\dfrac{1}{4}=\dfrac{5}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\) 

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{1}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\left(L\right)\\x=\dfrac{-\sqrt{5}+1}{2}\left(TM\right)\end{matrix}\right.\) 

Vậy...

Quoc Tran Anh Le
8 tháng 2 2021 lúc 11:36

Ảnh bị up thiếu, đề còn thiếu đây nhé undefined

 

Nguyễn Trọng Chiến
9 tháng 2 2021 lúc 8:24

Bài II

1 Giả sử a+b+c+d là số nguyên tố 

\(\Rightarrow a\left(a+b+c+d\right)=a^2+ab+ac+ad=a^2+ab+bd+ad\) (do ac=bd) =a(a+b)+d(a+b)=(a+b)(a+d) \(\Rightarrow a\left(a+b+c+d\right)⋮\left(a+b\right)\left(a+d\right)\)  Mà a<a+b,a<a+d do a,b,c,d \(\in Z^+\) \(\Rightarrow a+b+c+d⋮\left(a+b\right)\left(a+d\right)\) Vô lí \(\Rightarrow\) giả sử sai 

Vậy a+b+c+d là hợp số 

Xem chi tiết
Hồng Phúc
7 tháng 2 2021 lúc 10:01

I.1.

ĐK:  \(x\in R\)

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow2x^2+6x+2=2\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow x^2+1+x^2+6x+9-2\left(x+3\right)\sqrt{x^2+1}=8\)

\(\Leftrightarrow\left(x+3-\sqrt{x^2+1}\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3-\sqrt{x^2+1}=2\sqrt{2}\\x+3-\sqrt{x^2+1}=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+3-2\sqrt{2}\left(1\right)\\\sqrt{x^2+1}=x+3+2\sqrt{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+1}=x+3-2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3-2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3-2\sqrt{2}\right)x+17-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\sqrt{2}-3\\2\left(3-2\sqrt{2}\right)x=12\sqrt{2}-16\end{matrix}\right.\)

\(\Leftrightarrow x=2\sqrt{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+1}=x+3+2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3+2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3+2\sqrt{2}\right)x+17+12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3-2\sqrt{2}\\2\left(3+2\sqrt{2}\right)x=-16-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow x=-2\sqrt{2}\)

Vậy phương trình có nghiệm \(x=\pm2\sqrt{2}\)

Nguyễn Ngọc Lộc
7 tháng 2 2021 lúc 10:08

Câu 1 :

Ta có : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

- Đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)

PT TT : \(a^2+3x=a\left(x+3\right)\)

\(\Leftrightarrow a^2-ax-3a+3x=0\)

\(\Leftrightarrow a^2-a\left(x+3\right)+3x=0\)

Có : \(\Delta=b^2-4ac=\left(a+3\right)^2-4.3a=a^2+6a+9-12a\)

\(=a^2-6a+9=\left(a-3\right)^2\ge0\forall a\)

TH1 : \(\Delta=0\Rightarrow a=3\left(TM\right)\)

\(\Rightarrow\sqrt{x^2+1}=3\)

\(\Rightarrow x=\pm2\sqrt{2}\)

TH2 : \(\Delta>0\)

=> Pt có 2 nghiệm phân biệt :\(\left\{{}\begin{matrix}a=\dfrac{x+3+\sqrt{\left(x-3\right)^2}}{2}\\a=\dfrac{x+3-\sqrt{\left(x-3\right)^2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+\left|x-3\right|}{2}\\\sqrt{x^2+1}=\dfrac{x+3-\left|x-3\right|}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=\dfrac{2x}{2}=x\\\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\\\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=9\\x^2+1=x^2\end{matrix}\right.\)

\(\Rightarrow x=\pm2\sqrt{2}\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm2\sqrt{2}\right\}\)

 

Hồng Phúc
7 tháng 2 2021 lúc 10:11

I.2

Đặt \(x+y=a;xy=b\)

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+x+y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3-3ab+a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3-6+a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a^3+a-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\\left(a-2\right)\left(a^2+2a+5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=2\\a=2\left(\text{vì }a^2+2a+5>0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow x=y=1\)

Vậy ...

Quoc Tran Anh Le
Xem chi tiết
tthnew
10 tháng 2 2021 lúc 16:04

Câu III ý 2)

Ta có:

\(P^2\le\left(a^2+b^2\right)\left[3b\left(a+2b\right)+3a\left(b+2a\right)\right]=2\left[6\left(a^2+b^2\right)+3\cdot2ab\right]\)

\(\le2\left[6\cdot2+3\left(a^2+b^2\right)\right]\le36\Rightarrow P\le6.\)

Đẳng thức xảy ra khi $a=b=1.$

Vậy...

Trương Huy Hoàng
10 tháng 2 2021 lúc 16:39

Bài V có phải là 3; 3; 4 không anh Quoc Tran Anh Le CTV?

Nguyễn Trọng Chiến
10 tháng 2 2021 lúc 21:34

Bài I

1 ĐKXĐ x\(\ge-2\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\) ( Do \(\sqrt{x+5}+\sqrt{x+2}>0\) ≠ 0 nên có thể nhân cả hai vế )\(\Leftrightarrow\left(x+5-x-2\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(\sqrt{x+5}+\sqrt{x+2}\right)\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\) \(\Leftrightarrow1-\sqrt{x+5}+\sqrt{\left(x+5\right)\left(x+2\right)}-\sqrt{x+2}=0\Leftrightarrow\left(1-\sqrt{x+5}\right)\left(1-\sqrt{x+2}\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(L\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

 Vậy.....

Quoc Tran Anh Le
Xem chi tiết
Sad boy
30 tháng 7 2021 lúc 16:49

em comment đầu và muốn nói :''em không bt lm ''

Khánh Nam.....!  ( IDΣΛ...
30 tháng 7 2021 lúc 16:50

Chịu 

htfziang
30 tháng 7 2021 lúc 16:56

¯\\_(ツ)_/¯ ko hiểu j hết  :))